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The Powerful Influence of Marks: Visual and Knowledge-Driven
Processing in Hurricane Track Displays
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Given the widespread use of visualizations to communicate hazard risks, forecast visualizations must be
as effective to interpret as possible. However, despite incorporating best practices, visualizations can
influence viewer judgments in ways that the designers did not anticipate. Visualization designers should
understand the full implications of visualization techniques and seek to develop visualizations that
account for the complexities in decision-making. The current study explores the influence of visualiza-
tions of uncertainty by examining a case in which ensemble hurricane forecast visualizations produce
unintended interpretations. We show that people estimate more damage to a location that is overlapped
by a track in an ensemble hurricane forecast visualization compared to a location that does not coincide
with a track. We find that this effect can be partially reduced by manipulating the number of hurricane
paths displayed, suggesting the importance of visual features of a display on decision making. Providing
instructions about the information conveyed in the ensemble display also reduced the effect, but
importantly, did not eliminate it. These findings illustrate the powerful influence of marks and their
encodings on decision-making with visualizations.

Public Significance Statement
People use data visualizations with uncertainty to make large-scale policy decisions such as where
to allocate resources before a natural disaster and more personal life and death decision such as
whether to evacuate before a forecasted hurricane. The current work evaluates how visualization
techniques influence reasoning during hazard events and leads to practical recommendations for how
to help viewers make their best possible decisions with ensemble hurricane forecast visualizations.

Keywords: ensemble hurricane visualizations, visualization cognition, visual-spatial biases, decision-
making, risk
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We use data visualizations—visual representations of data—as a
vital source of information during hazard events with uncertainty.
For example, when making hurricane evacuation decisions, nu-
merous studies find that Americans depend on TV news broadcasts
(e.g., Driscoll & Salwen, 1996; Lindell, Lu, & Prater, 2005;
Lindell & Perry, 2004), which predominantly use visualizations of
hurricane data to communicate the risk associated with a storm.
Unfortunately, understanding even simple visualizations of uncer-
tainty is challenging for both trained experts and the general public

(Belia, Fidler, Williams, & Cumming, 2005). Given the wide-
spread use of uncertainty visualizations during hazard events, it is
vital we understand how they influence our judgments of risk and
ultimately our preparatory actions.

Visualization researchers have made significant advancements
in developing visualizations that elicit fast and effective judg-
ments. However, despite using best practices, visualizations may
still produce unintended judgments (e.g., Belia et al., 2005; Joslyn
& LeClerc, 2013; Padilla, Ruginski, & Creem-Regehr, 2017; Ru-
ginski et al., 2016). For example, when viewing bar charts, people
report that points within the bar are more likely to be a member of
the distribution than points that are equidistant from the mean but
outside the bar (Newman & Scholl, 2012). One possible cause of
unintended visualization interpretations is the influence of the
composition of marks (i.e., geometric primitives, such as dots and
lines) in relation to visual encoding channels (i.e., the controls of
the primitive’s appearance, such as color and position; Munzner,
2014). For example, blurring the marks in a visualization may
evoke a feeling of out of focus, which researchers propose intui-
tively communicates uncertainty in the data (Jiang, Ormeling, &
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Kainz, 1995). Although many compositions of marks and encod-
ing channels provide viewers with additional beneficial informa-
tion, issues may arise when the possible unintended interpretations
and subsequent decision-making have not been evaluated.

To examine cases in which seemingly useful visual composi-
tions can distort interpretations, the current study draws on ensem-
ble display visualizations of hurricane track forecasts, shown to be
an effective technique when compared to more traditional sum-
mary displays (Liu, Padilla, Creem-Regehr, & House, 2019; Ru-
ginski et al., 2016), but also susceptible to biases (Padilla et al.,
2017; see Figure 1). In prior work, we compared hurricane path
uncertainty visualizations, which revealed that people misinterpret
summary displays of hurricane track forecasts (Figure 1A, D, and
E). We found that people believe that the summary displays show
the hurricane increasing in damage over time (Ruginski et al.,
2016). In subsequent research, when participants were asked to
explicitly judge the size and intensity of a predicted hurricane,
responses were consistent with the previous damage ratings, sug-
gesting that damage ratings incorporate perceptions of both size
and intensity of the storm. Participants showed a greater increase
in size and intensity ratings with time when viewing the cone
display (Figure 1A) compared to ensemble display (Figure 1C;
Padilla et al., 2017). In addition, with the ensemble display we
found that damage ratings and intensity ratings closely align with
the uncertainty in the storm path (Padilla et al., 2017; Ruginski et
al., 2016). The results of these studies suggest that the ensemble
display reduces misinterpretations about the storm path and is a
promising alternative to the summarization visualization tech-
niques that are currently used by the National Hurricane Center,
which are similar to Figure 1A.

Before recommending adoption of the ensemble hurricane track
visualization, we sought to examine whether the seemingly useful

composition of marks and encodings tested in Ruginski et al.
(2016) produced any unintended interpretations. Motivated by TV
forecasts from numerous hurricanes in 2017, we wanted to under-
stand how people reason with ensemble forecasts when one of the
ensemble members or paths directly intersects their town. Padilla
et al. (2017) tasked participants with comparing potential damage
to two oil platforms—one platform was always collocated with a
forecasted hurricane path and the other was not (see Figure 2). This
study examined whether viewers believed that oil platforms closer
to the center of the distribution of paths (i.e., the area with the most
densely populated grouping of lines) would receive more damage,
as reported in Ruginski et al. (2016), or if participants believed
there would be greater risk associated with locations that were
collocated with an ensemble member. Naïve viewers increased the
proportion of trials in which they reported that the location farther
from the center of the distribution of paths would receive more
damage only when an ensemble member was collocated with the
farther location (Figure 2A). In other words, people overempha-
sized the importance of a hurricane track when it overlaps an oil
rig. We call this the collocation effect. In fact, in the ensemble
hurricane forecasts presented, the lines are a subset of runs of the
model, with perturbations to speed and bearing based on 5-year
historical hurricane data (Liu et al., 2016, 2019; Padilla et al.,
2017; Ruginski et al., 2016). As the lines are a randomly sampled
subset of the model runs, each line is not a deterministic path, just
one of many possible predicted paths.

Given the advantages of the ensemble hurricane visualizations
over the current summary display method used by the National
Hurricane Center and other proposed visualization techniques (Pa-
dilla et al., 2017; Ruginski et al., 2016), we sought to understand
and reduce the collocation effect to ensure that ensemble displays
are as effective to use as possible. Using the cognitive framework

Figure 1. Example of the five hurricane track visualizations compared in Ruginski et al. (2016). Reprinted with
permission.
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for visualization decision-making proposed by Padilla, Creem-
Regehr, Hegarty, and Stefanucci (2018), we identified two key
ways to reduce the collocation effect. The Padilla et al. (2018)
framework suggests that both bottom-up and top-down processing
can influence decisions with visualizations. Using bottom-up pro-
cessing we sought to change the visual properties of the en-
semble hurricane forecast, which would have downstream ef-
fects on all the subsequent decision-making processes. Drawing
on top-down processes, our second approach encouraged view-
ers to use knowledge-driven processing via instructions to
override the collocation effect.

Modifying the Properties of the Visualization

One concept that can help us identify the properties of the
ensemble display that could be changed to reduce the collocation
effect is that of visual thought, proposed by Tversky (2014). Visual
thought suggests that in addition to communicating the relation-
ships in the data, marks and encodings relay additional information
that informs how we conceptualize the information. For example,
numerous studies have documented a containment bias, where
viewers interpret elements within a boundary as more similar than
elements outside a boundary (Belia et al., 2005; Boone, Gunalp, &
Hegarty, 2018; McKenzie, Hegarty, Barrett, & Goodchild, 2016;
Newman & Scholl, 2012). In one study, McKenzie et al. (2016)
showed that participants who viewed a geospatial uncertainty visual-
ization with a hard boundary were more likely to use a containment
heuristic than those who saw the same data but represented with a
blurred edge created by a Gaussian fade. Freksa and Barkowsky
(1996) suggest that sharp boundaries denote distinct concepts more
than fuzzy boundaries. In hurricane ensemble track displays, the
nature of the marks and encodings could be communicating additional
information to the viewer that is producing the collocation effect. The
properties of the ensemble display that can be changed to potentially
reduce the collocation effect are the number of lines plotted (i.e.,
changing the marks) and color, line width, and line quality (i.e.,
changing the encodings of the lines). Prior research has successfully
used the color of the hurricane tracks to communicate the category of
the storm (Liu et al., 2019). As our long-term goal is to communicate

the uncertainty in the category, size, and speed of the storm in addition
to the path, here we save the encoding channels of color, line width,
and line quality for other data parameters and focus on reducing the
collocation effect by modifying the number of ensemble members
shown.

The collocation effect may occur, in part, from the way in which
the depiction of the ensemble lines leads people to believe that
each line is a deterministic path that the hurricane could take rather
than representing a sampling from a distribution of paths. Savelli
and Joslyn (2013) have also documented cases where participants
assume that probabilistic information is deterministic, entitled a
deterministic construal error. When participants view upper and
lower confidence intervals from a distribution of temperatures,
they assume the intervals represent deterministic forecasted high
and low temperatures (see also attribute substitution in Kahneman,
2011). A deterministic assumption would be appropriate for many
visualizations, but it leads to misunderstanding in the case of
uncertainty communication. If people assume that each of the
hurricane paths represents individual paths the hurricane could
take rather than a sampling from a distribution of possible paths,
participants may associate a probability with each line. For exam-
ple, see the cartoon figure of two fictitious hurricane ensemble
track forecasts in Figure 3. In both fictitious forecasts, the ensem-
ble tracks are sampled from the same distribution of paths. If a
viewer believes that each route is a deterministic path the hurricane
could take, he or she might conclude that in forecast A, New
Orleans has a 33% chance of being hit by the storm, whereas, in
forecast B, New Orleans has only a 10% chance.

The first goal of this work is to attempt to reduce the colocation
effect by increasing the number of hurricane paths plotted. This
approach takes advantage of the viewer’s current conceptualiza-
tion of the visual display but does not change it. If we can reduce
the colocation effect by changing the number of lines, this would
suggest that the visual depiction of paths is partially responsible
for the previously observed bias (Padilla et al., 2017). Further, this
work would offer clear recommendations for the number of en-
semble members to plot for visualization practitioners.

Figure 2. Hurricane forecast display stimuli used in Padilla et al. (2017), where the red dots indicate the
location of offshore oil platforms. In A, location a is collocated. In B, location b is collocated. See the online
article for the color version of this figure.
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Activating Knowledge-Driven Processing
via Instructions

The second approach highlighted in the Padilla et al. (2018)
cognitive framework for visualization decision-making is to en-
courage viewers to use knowledge-driven processing to override
the collocation effect. The interpretation that the paths in the
ensemble hurricane forecast are a set of all deterministic forecasted
paths is reasonable because viewers were given little information
about how the ensemble forecasts were generated. For example,
the task instructions used in Padilla et al. (2017) were,

Throughout the study you will be presented with an image that
represents a hurricane forecast, similar to the image shown above. An
oil rig is located at each of the two red dots. Your task is to decide
which oil rig will receive more damage based on the depicted forecast
of the hurricane path.

To encourage viewers to adopt decisions more consistent with
the modeling procedure used, at a minimum we need to provide
viewers with instructions about how the ensemble visualizations
are made.

Whereas providing viewers with detailed instructions about a
visualization may seem like an obvious necessity, a growing body
of research demonstrates inconsistent findings concerning how
effectively viewers incorporate additional information, such as
instructions or decision aids, into their decisions (Boone et al.,
2018; Grounds, Joslyn, & Otsuka, 2017; Joslyn & LeClerc, 2013;
Pugh, Wickens, Herdener, Clegg, & Smith, 2018; Savelli & Jos-
lyn, 2013). Savelli and Joslyn (2013) found that participants main-
tained the incorrect belief that the temperature error bars repre-
sented high and low temperature forecasts despite a key that
detailed the correct way to interpret the visualizations (see also
Grounds et al., 2017). Pugh et al. (2018) found that training with
a summary hurricane forecast path visualization (similar to Figure
1A) improved hurricane path trajectory judgments only when the
visualization was present, and the training had no benefit when the
visualization was not present. Further, Boone et al. (2018) at-
tempted to improve participants’ judgments with the summary
hurricane path visualization by providing instructions about how
the hurricane forecasts were generated. They found that using
several types of instructions helped to reduce misconceptions

about the size of the storm growing over time, but the instructions
did not consistently influence participants’ behavioral risk judg-
ments about the storm.

Beyond viewers inconsistently incorporating additional infor-
mation about a visualization into their decisions in the laboratory,
in real-world scenarios people are provided with limited informa-
tion about how forecasts are created. The majority of Americans
receive information about hurricanes in TV broadcasts (Lindell et
al., 2005), and newscasters rarely provide information about how
they created the forecast visualizations. For example, one day
before hurricane Irma made landfall on September 10th, 2017, of
the 20 most viewed forecasts archived on Archive.org, none of the
newscasters detailed how the storm path models or visualizations
were created, and the average running time of a video clip was
1:52 min (data available in the online supplementary materials).
Further, three of these forecasts included misleading information
concerning how to interpret the summary hurricane path visual-
ization, such as suggesting that areas inside the boundary are in the
danger zone whereas areas outside are relatively safe. In addition,
people evaluate many factors when considering evacuation, such
as their peers evacuating, businesses closing, living in high risk
areas, and official warnings (Huang, Lindell, & Prater, 2016). For
these practical reasons, we sought to identify the minimum amount
of instructional information needed to reduce the collocation ef-
fect, so as not to require undue amounts of time and energy from
the viewer. To this aim, we tested two types of instruction manip-
ulations. In one set of video instructions, participants learned about
how the ensemble hurricane forecast visualization was created,
similar to instructions provided in Boone et al. (2018). In the
second, we tested more extensive instructions that also explained
the collocation effect to participants and gave them practice over-
coming it.

Overview of Experiments

Experiment 1 sought to reduce the colocation effect observed in
Padilla et al. (2017) by changing the number of hurricane paths
plotted. We hypothesized that increasing the number of lines
would significantly reduce the collocation effect if viewers assume
each line to be a deterministic forecasted path rather than a
sampling from a distribution. To test this hypothesis, we varied

Figure 3. Illustration of two fictitious hurricane ensemble track forecasts. A depicts three ensemble members
and B depicts 10 members. See the online article for the color version of this figure.
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whether the target oil rig location intersected a line and the number
of ensemble members represented. We predicted that damage
ratings would be greater for target locations that are intersected by
a hurricane path compared to locations that are not, and damage
ratings would be greatest when fewer hurricane paths are shown.

In Experiment 2, we provided participants with several types of
video instructions on how to overcome the collocation effect to test
whether viewers can use knowledge- driven processing to override
the influence of marks and encodings. The first type of instructions
included information about how the visualization was created
(visualization instructions). The goal of testing the visualization
instructions was to determine if information about the modeling
technique used and visualization generation procedures is suffi-
cient to help people significantly reduce the colocation effect. In
addition, based on pilot think-aloud trials that provided insight into
participants’ conscious strategies, we developed a more elaborate
task-specific video tutorial with information about the collocation
effect and instructions about refraining from increasing damage
judgments when an ensemble member was collocated with the
point of interest. Given that prior work is inconclusive as to
whether viewers can incorporate additional information to inter-
pret a visual display, we tested if instructions that directly ex-
plained both how the visualization was created and how to com-
plete the task could help participants overcome the collocation
effect (task-specific instructions).

Experiment 1

To test whether increasing the number of lines plotted reduces
the colocation effect, we conducted an experiment in which the
number of hurricane-simulated ensemble members (9, 17, 33, and
65) was manipulated. Participants viewed a hurricane track visu-
alization with either 9, 17, 33, or 65 tracks and estimated the level
of damage that off-shore oil rigs at specified locations would incur,
which fell either on or off an ensemble member (see Figure 4; e.g.,
stimuli). We predicted that the difference in damage estimates
between locations falling on versus off an ensemble member
(collocation effect) would decrease as the total number of ensem-
ble members increased.

Prior work has found that damage ratings, although indirect, are
reflective of the individual’s conceptualization of the trajectory of
the storm (Padilla et al., 2017). In a study in which viewers made
damage, size, and intensity ratings using hurricane path forecasts,
researchers found that viewers integrate their understanding of the
trajectory of the storm with their assumptions about its size and
intensity (Padilla et al., 2017). In this way, damage is a complex
judgment that provides information about how people make risk
assessments about the path of a storm. Further, we sought to avoid
requiring viewers to make probability judgments (i.e., What is the
probability that the storm will hit the oil rig?), which are classically
challenging and error-prone (Gigerenzer & Hoffrage, 1995). For
example, Belia et al. (2005) demonstrated that even experts per-
form poorly at statistical inference tasks with simple uncertainty
visualizations of error bars.

Method

Participants. Based on the effect size described in Padilla et
al. (2017), a power analysis was conducted using G�Power (Faul,

Figure 4. Example stimuli, showing the 9-track (A), 17-track (B), 33-
track (C), and 65-track (D) displays. The black dot indicates the location of
the offshore oil rig and none are collocated with a hurricane track. See the
online article for the color version of this figure.
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Erdfelder, Buchner, & Lang, 2009) to determine an adequate
sample size. At an alpha of level 0.05, power of 0.80, and an effect
size of f2 � 0.11, the minimum number of participants needed is
54 for two groups. Participants were 200 undergraduate students
currently attending the University of Utah who completed this
study for course credit, of which 73 were male and 127 were
female, with a mean age of 22 (SD � 5.58). Each participant
completed the task with visualizations that had one quantity of
simulated ensemble members (9 tracks, n � 52; 17 tracks, n � 50;
33 tracks, n � 50; and 65 tracks, n � 48). Institutional review
board (IRB) approval for this research was obtained from the
University of Utah IRB.

Stimuli. Liu et al. (2019) proposed a path reconstruction pro-
cedure that more effectively represents a distribution of hurricane
paths (Figure 5B) compared to random sampling (Figure 5A). By
separating the paths, additional information can be encoded in the
paths using color, line weight, and line quality. For example, Liu
et al. (2019) added color to the paths to show the category of the
hurricane and found that people demonstrate the same pattern of
damage rating as with randomly sampled paths, which indicates
they understand the uncertainty in similar ways in both techniques.

To examine the collocation effect, code was generated to create
artificial hurricane forecast images that mimicked properties sug-
gested by Liu et al. (2019) and distributions in such a way that one
of the ensemble members passed through the center of a black dot
used to depict the “oil rig” location (see Figure 6A). The stimuli
used in the current study differed from the hurricane forecast
tracks tested in Liu et al. (2019) in a few ways. Specifically, gaps
were placed in the distributions and the tracks were straight lines,
both of which were important for increasing the experimental
control by creating the manipulations in the current study. The gap
was specified in the distribution to ensure that only one line would
be collocated with the oil rig location. To create trials where no
line was collocated with the oil rig, the previously collocated line
was moved to the other side of the distribution in such a way that
it was equidistant from the center compared to its original location
(see Figure 6C). This placement allowed for direct comparison of
trials in which a line was and was not collocated with the oil rig,

all other factors remaining constant. The transposition of the
collocated line was also the reason the lines needed to be straight.
Further, the straight lines allowed for the entire distribution of lines
to be flipped over the distribution midline to counterbalance any
skewing that may occur from moving the collocated line (see
Figure 6B and 6D). In the code, a dot angle was specified that
indicated the angle away from the midline at which the oil rig
would be placed. N-2 hurricane track lines were sampled from a
clipped normal distribution. No two lines could be oriented within
0.25° of one another. The midline was accidentally also plotted
and did not adhere to the minimum angular distance constraint.
Lines were excluded from two 1.5° gaps. The first gap was
centered around the oil rig position. The second gap was equidis-
tant from the center of the distribution, but in the opposite direction
from the oil rig position, which allowed the distribution of paths to
be flipped over the distribution midline. One additional line was
then specified to intersect with the oil rig, producing one stimuli
image (see Figure 6A). A second image was also generated in
which the additional line was plotted through the gap that did not
contain the oil rig (see Figure 6B). The two resulting images were
then flipped over the midline to create a total of four mirrored
images, two collocated referred to subsequently as “online” and
two noncollocated were referred to as “offline” (see Figure 6C and
6D). Thin line widths for the hurricane tracks and a small diameter
for the oil rig were selected to increase the precision of the dot
overlap with the line.

We chose the following distances to place the oil platforms
relative to the mean of the distributions: 14° and 12°. In our prior
work, we used a wide range of distances from the center of the
distribution and found correspondingly larger differences in dam-
age ratings (Padilla et al., 2017; Ruginski et al., 2016). Our
intention here was not to add to the distance finding, but to
conceptually replicate it to ensure that the changes we made to the
visualization technique did not result in unintended consequences
for viewers’ perception of the distribution. The distances were
chosen to place the gaps in the tails of the distribution, thus
reducing the noticeability of the gap by ensuring it was located in
less densely populated regions of the distributions. Each simulated

Figure 5. Comparison of randomly selected paths (A) and a path reconstruction procedure (B) proposed by Liu
et al. (2019). Reprinted with permission. See the online article for the color version of this figure.
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ensemble member was a straight line of fixed length, characterized
by its slope represented as an angle. Four quantities (9, 17, 33, and
65) of angles were randomly sampled from a clipped normal
distribution with a maximum spread of 40°, a standard deviation of
5°, and a line thickness of 1 pixel. These quantities were selected
to represent a wide range of values, which were created starting
with a base of 8 and using a logarithmic scale to select 16, 32, and
64. Each quantity had an additional ensemble member, which was
the transient ensemble member that was either collocated with the
oil platform or moved to the other side of the distribution. Sixty-
five simulated ensemble members were, subjectively, the upper
bounds of reasonable ensemble members to represent, given the
standard deviation, max-spread, and thickness of lines that we
specified. In our case, more than 65 simulated ensemble members
would have resulted in a distribution that would no longer be
perceivable. Given that we aimed to test whether we could reduce
the collocation effect by increasing the number of simulated en-
semble members, we felt it was essential to test a wide range of
quantities of ensemble members even if all the versions did not
adhere to visualization design recommendations. Finally, to in-
crease the number of trials, each of the permutations was seeded
four times (i.e., randomly sampled four times), and each was then
displayed with the midline oriented at three different angles
(�30, 0, �30), resulting in a total of 96 trials. All simulated
ensemble distributions were digitally composited over a map of the
U.S. Gulf Coast that had been edited to minimize distracting
labeling. These images were displayed to the subjects at a pixel
resolution of 960 � 640 pixels. Underneath the forecast, a scale
ranging from 1 (no damage) to 7 (severe damage) was displayed.

For each trial, participants were shown one display depicting a
hurricane path visualization. Stimuli were presented on the Qual-
trics web application (Qualtrics, 2005).

Design. We used a 4 (number of simulated ensemble mem-
bers: 9, 17, 33, and 65) � 2 (collocation: on- and off-line) � 2 (oil
rig locations: 12° and 14°) � 2 (side of the distribution: left and
right) � 3 (angle of storm: �30, 0, and 30) � 4 (seeds) mixed
factorial design. Collocation, oil rig locations, side, angle of storm,
and seeding were within-participant variables, resulting in a total
of 96 trials per participant. Participants were randomly assigned to
one of four visualization conditions (9, 17, 33, and 65 simulated
ensemble members) as a between-participants factor.

Procedure. Participants completed these studies online for
course credit on their personal machines, which were required to
have screen sizes of larger than 9.4-in tall � 6.6-in wide. Individ-
uals were first given the following instructions for the task and
visualization:

In the following experiment, you will view maps showing the forecast
path of different hurricanes as they travel over the Gulf of Mexico
toward land. The maps will also show the location of one offshore oil
platform in the Gulf. Oil platforms are large structures on the surface
of the water with components that extend to the ocean floor for
drilling and storing oil.

See the sample map below. A set of potential forecast paths of where
the hurricane will move in the next three days is shown in red, and the
location of the oil platform is shown by a small black circle. Your task
is to estimate the level of damage that the platform will incur based on

Figure 6. Example of the 33-track display, where one line was reflected over the mean line of the distribution
of simulated ensemble members to make a collocation condition (A) and a noncollocation condition (C). B and
D represent the mirror images of A and B, where the underlying map remained constant. See the online article
for the color version of this figure.
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the depicted forecast of the hurricane path on a scale of 1 to 7 where
1 is no damage and 7 is severe.

You will make your judgments of potential damage to the oil platform
using the damage scale provided below the map, which will be
presented to you along with the forecast maps on each trial. To
respond, you should check the box (1 through 7) associated with the
level of damage that you believe will occur to the oil platform as a
result of the forecasted hurricane. The hurricane forecasts and the
locations of the oil platforms will vary across trials.

In addition, each trial included the following text as a reminder
of the task: “What is the level of damage that the oil platform will
incur?” Following the instructions, participants completed all the
trials presented in a different random order for each participant and
reported their confidence in their predictions on a Likert scale
ranging from 1 (not at all confident) to 7 (very confident) for every
trial. Lastly, at the end of the experiment, participants answered
three questions related to comprehension of the hurricane fore-
casts.

Results

Multilevel models were fit to the data using the R lme package
(Bates, Mächler, Bolker, & Walker, 2015) with restricted maxi-
mum likelihood estimation procedures (Raudenbush & Bryk,
2002). Multilevel modeling is a generalized form of linear regression
that is used to analyze variance in experimental outcomes predicted
by both individual (within-participant s) and group (between-
participants s) variables. Visualization was dummy coded such that
the 9-track visualization was the referent. Collocation was coded such
that the coefficients indicated a change from off-line trials to online
trials, meaning that a significant positive slope reveals a collocation
effect. Collocation (off and on), visualization (9-track, 17-track, 33-
track, and 65-track), distance (12° and 14°), and the interaction
between collocation and visualization were entered as fixed effects.
Participants were entered as random effects. Self-report measures of
experience with hurricanes and hurricane prone regions were also
collected. The results of this analysis can be seen in Table 1. The
participants were students at the University of Utah, and few had
experienced a hurricane (3%) or had lived in hurricane-affected re-
gions (7%), so we did not include these measures as covariates.

Our primary hypothesis was that we would see less of a collo-
cation effect for hurricane track visualizations with more simulated

ensemble members. To start, there was a main effect of Colloca-
tion, meaning that for the 9-track display (the referent) and at the
12° distance (also the referent), damage ratings increased by 1.7
points (on the 7-point Likert scale) when the oil rig was intersected
by one of the lines compared to when it was not.

Consistent with our predictions, we also found a significant
interaction between collocation and each of the visualizations
compared to the 9-track display. The negative coefficient for each
of these interactions indicates that the difference between the
online and off-line trials is significantly smaller for the 17-, 33-,
and 65-track displays compared to the 9-track display at the closest
distance. The 9-track online trials (M � 4.55, SD � 1.56) elicited
1.71 more damage than the off-line trials (M � 2.84, SD � 1.47).
The difference between the online and off-line trials is 0.42 smaller
for the 17-track display (online: M � 4.27, SD � 1.56, off-line:
M � 2.99, SD � 1.56), 0.52 smaller for the 33-track display
(online: M � 3.98, SD � 1.36, off-line: M � 2.80, SD � 1.28),
and 0.15 smaller for the 65-track display (online: M � 4.24, SD �
1.53, off-line: M � 2.68, SD � 1.47) compared to the 9-track
display.

To visualize the reduction in the collocation effect, we transformed
the dependent variable by calculating the difference between the
online damage ratings and off-line damage ratings at the same oil
platform location, seed, and storm angle. The transformation pro-
duced a damage change score where zero indicates no collocation
effect, positive values indicate an increase in reported damage for
online trials compared to off-line trials, and negative values would
indicate a decrease in reported damage for online trials compared to
off-line trials. These data are displayed in Figure 7.

As illustrated in Figure 7, the 17-, 33-, and 65-track visualizations
show significantly less of a collocation effect. However, unexpect-
edly, the 65-track visualization shows more of a collocation effect
than the 17- and 33-track displays. A post hoc analysis confirmed that
after setting the 65-track visualization as the referent and running the
same model as previously described, collocation and each of the
visualizations compared to the 65-track display had significant inter-
actions. The negative coefficients for the interactions between collo-
cation and the 17-track display (b � �0.27), t(191) � �6.46, p �
.00, 95% confidence interval [CI: �0.35, �0.19] and the 33-track
display (b � �0.37), t(191) � �8.74, p � .000, 95% CI
[�0.45, �0.28] indicated that the collocation effect was significantly

Table 1
List of Fixed Effects With Coefficients, Standard Errors, t-Values, p Values, and 95%
Confidence Intervals From the Statistical Model Predicting Damage Ratings

Fixed effects Coefficients SE t value p value 95% CI

(Intercept) 3.87 .17 21.83 .00 [3.52, 4.21]
Collocation 1.70 .02 58.40 .00 [1.65, 1.76]
17-track .14 .21 .67 .50 [�.27, .55]
33-track �.05 .21 �.23 .81 [�.46, .36]
65-track �.16 .21 �.75 .45 [�.58, .25]
Distance �.07 .007 �10.54 .00 [�.09, �.06]
Collocation � 17-track �.42 .04 �10.21 .00 [�.50, �.34]
Collocation � 33-track �.52 .04 �12.53 .00 [�.60, �.44]
Collocation � 65-track �.15 .04 �3.58 .0003 [�.23, �.06]

Note. CI � confidence interval. Collocation was coded such that the effects indicate a change from offline to
online.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

8 PADILLA, CREEM-REGEHR, AND THOMPSON



smaller for the 17- and 33-track displays compared to the 65-track
display at the 12° distance.

A significant main effect of distance revealed that at the distance
closer to the center of the distribution (12°, M � 3.63, SD � 1.06),
participants believed that the oil rig would receive more damage
compared to the farther oil rig location (14°, M � 3.47, SD �
1.09), which is in line with prior work and indicates that viewers
perceived the uncertainty communicated in the distribution. Al-
though significant, a change of .16 is small on a Likert scale from
1 to 7. In sum, this finding is in line with past work that suggests
viewers effectively perceived the probability distribution that the
hurricane track simulated ensemble visualization is intended to
represent.

Participants also reported their confidence in their judgments for
each trial using a Likert scale ranging from 1 (not at all confident)
to 7 (very confident), along with follow-up questions about the
visualizations. Using a multilevel model, we evaluated the impact
of visualization and collocation (fixed effects) on confidence rat-
ings with participants as random effects. This analysis revealed no
significant change in confidence from the 9-track display (M �
4.56, SD � 1.63) compared to the 17- (M � 4.65, SD � 1.51), 33-
(M � 4.39, SD � 1.54), and 63-track displays (M � 4.87, SD �
1.44). However, the main effect of collocation showed the partic-
ipants were more confident about their judgments for the online
(M � 4.68, SD � 1.50) trials than the off line trials (M � 4.56,
SD � 1.58), b � .117, t(198) � 9.03, p � .000, 95% CI [0.09,
0.14]. However, the increased confidence for the online trials was
quite small, 1.71%.

The results of the survey questions can be found in Table 2.
Using a general linear model, visualization was used to predict
question response with the 9-track display as the referent. Full

output of the models can be found in the online supplementary
materials.1 For Q1, which references uncertainty in the visualiza-
tion, no significant differences were found between the 9-track
display and other visualization techniques, with participants at
chance performance. For Q2, which references the collocation
effect, participants viewing the 17- and 33-track displays showed
fewer correct responses than those viewing the 9-track display,
which is surprising because participants’ behavioral judgments
were in the opposite direction, where the 17- and 33-track displays
show the least collocation effect. For Q3, viewers of the 65-track
display were more likely to indicate that the hurricane forecast
showed all possible paths the hurricane could take compared to the
9-track display. This result suggests that when too many ensemble
members are plotted, one unintended effect may be that viewers
believe that they represent all of the possible outcomes. To
follow-up on this finding, a linear model was conducted with Q3
predicting the damage change score (collocation effect) of the
65-track display. This analysis revealed that participants who
answered “no” to Q3 showed significantly less of a collocation
effect (M � 1.38, SD � 1.36) compared to those who answered
“yes” (M � 1.68, SD � 1.56), b � �0.30, t(46) � �6.82, p � .00,
95% CI [�0.38, �0.21].

Discussion

The results of this experiment showed that novice users are less
influenced by the impact of a single simulated ensemble member
when more ensemble members are represented. This finding sup-
ports our hypothesis that hurricane ensemble paths evoke an as-
sumption that each line is a deterministic forecasted path rather
than a sampling from a distribution and increasing the number of
paths decreases the negative impacts of this effect. In addition, we
found several unpredicted effects relating to visualizing the largest
number of simulated ensemble members (65-track). The primary
finding was that for the 65-track display, the collocation effect was
greater than for the 17- and 33-track displays (although still less
than the 9-track display). The postsurvey Q3 suggested that view-
ers were more likely to believe that the 65-track display repre-
sented all the possible paths the hurricane could take. A follow-up
analysis provided evidence that, for the 65-track display, incorrect
beliefs about the visualization representing all of the possible paths
increased the collocation effect. It could also be the case that for
the 65-track display, the gaps in the distribution of paths were
more apparent, which could also influence the collocation effect.
In sum, although increasing the number of simulated ensemble
members can reduce the collocation effect, evidence suggests that
when many ensemble members are represented, more viewers
believe that all possible outcomes are shown.

Importantly, it should be noted that the collocation effect was
never completely ameliorated. The 34-track visualization showed
the largest (30%) reduction of the collocation effect compared to
the 9-track display. Yet, participants still reported, using the Likert
scale, that oil platforms that were directly hit by one of the
simulated ensemble members would receive 1.28 units of more
damage than oil rig locations that were not directly hit.

1 Additional online materials can be found at: osf.io/j34g5/.

Figure 7. Damage change scores for the 9-, 17-, 33-, and 65-track
displays. Bars represent 95% confidence intervals around the mean.
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Experiment 2

In Experiment 2, we provided participants with several types of
video instructions on how to overcome the collocation effect to test
whether viewers can use knowledge-driven processing to override
the influence of marks and encodings.

The first step in developing informative instructions was to
identify what types of conscious decision-making strategies par-
ticipants were aware of using, in order to determine how top-down
knowledge may be able to influence the collocation effect. Based
on prior work that examined the use of strategies in a mental
rotation task that included visual information (Hegarty, 2017), we
used a concurrent verbal protocol and a retrospective protocol to
elicit participants’ strategies while they completed 10 randomly
sampled trials from Experiment 1. The objective of this pilot was
to study the processes that participants were aware of, in case they
may have been adopting deliberate cognitive strategies that could
have contributed to the collocation effect. Twenty undergraduate
and graduate students at the University of Utah participated in the
pilot for $10 (male � eight, female � 12, and a M age of 25.75,
SD � 4.3). Participants first received instructions on how to
complete concurrent verbal protocols, which involved instructing
them to verbalize their thoughts as they completed each stage of
the study, including the practice trials (Ericsson & Simon, 1992).
In line with recommendations from Ericsson and Simon (1992),
three practice trials were used to help participants become com-
fortable with verbalizing their thoughts while completing the task.
They were then given 10 think-aloud trials in which they were
instructed to verbalize everything that came to mind as they
completed all steps of the task. Following recommendations from
(Ericsson & Simon, 1992), participants were encouraged to “keep
talking,” rather than a social communication request, such as “tell
me what you think.” Finally, participants completed retrospective
protocols for which they reported what they thought while they
completed the think-aloud protocols. The entire process was video
recorded and transcribed.

Three distinct strategies and a combination of these strategies
were observed, including (a) distance strategy for which partici-
pants reported determining their damage rating based on how far
the oil rig was from the center of the distribution of simulated
ensemble members, (b) collocation for which participants specif-
ically commented on rating oil rig locations that are collocated
with a simulated ensemble member as receiving more damage, and
(c) surrounding ensemble members where participants reported
making their damage judgments based on the distance of the oil rig
to the surrounding simulated ensemble members. The results of
this pilot provide evidence that some participants strategically

increased their damage ratings when the oil rig was collocated with
an ensemble member. Given that some participants were aware of
the influence of collocation and the surrounding simulated ensem-
ble members, it is possible that if they had been given instructions
about how to overcome the collocation effect and interpret the
visualizations correctly, they would have been able to incorporate
this information into their decisions.

Using the findings of the think-aloud and retrospective proto-
cols, we developed two types of video instructions to test whether
participants can use top-down knowledge to overcome the collo-
cation effect. The task-specific instructions included information
about how to overcome the collocation effect, and the more gen-
eral visualization instructions included only information about
how simulated ensemble hurricane forecast tracks are generated.
We predicted that the task-specific instructions would reduce the
colocation effect significantly but, given the influence of visual
features, not completely. This finding would suggest that the
collocation effect could be influenced by top-down knowledge. In
addition, we predicted that the visualization instructions would
reduce the collocation effect but not to the degree of the task-
specific instructions.

Method

Participants. Participants were 83 undergraduate students
currently attending the University of Utah who received course
credit for participation. Three participants were disqualified for not
following instructions. Of the 80 (40 in each instructions group)
who were included in the analysis, 23 participants were male, and
57 were female, with a M age of 21 (SD � 3.7).

Stimuli and design. The same 9-track display stimuli were
utilized along with the same study design as in Experiment 1.
However, before receiving the experiment instructions, partici-
pants viewed one of two videos. Both videos can be found in the
online supplementary materials. The task-specific video included
narrated instructions about the collocation effect and information
about how the simulated ensemble hurricane forecasts were gen-
erated along with visual examples (length of 3.13 min). The full
transcripts of the instructions are in the Appendix. The sequence of
the task-specific instructions video was as follows:

1. Overview of the functions of hurricane forecasts

2. Description of how the type of hurricane forecast used in
this study was generated

3. Information about uncertainty in hurricane forecasts

Table 2
Proportion of Responses for Each Visualization Condition

Questions 9-track 17-track 33-track 65-track

Q1. The display indicates that the forecasters are less certain about the path
of the hurricane as time passes. Yes: 50% Yes: 46% Yes: 58% Yes: 38%

Q2. Locations that are touching a hurricane track are more likely to be hit
by the storm than locations equidistant from the center of the forecast
but not touching a hurricane track. No: 35% No: 16%� No: 12%� No: 25%

Q3. The hurricane forecast shows all possible paths the hurricane could take. No: 63% No: 54% No: 54% No: 42%�

� p � .05, with the 9-track display as the referent.
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4. Instructions on how to identify the center of the distri-
bution of paths and that the center represents the most
likely path the hurricane will take

5. Illustration of how static simulated ensemble hurricane
forecasts represent a subset of the many possible paths
generated by the forecast models

6. Description of the collocation effect

7. Practice overcoming the collocation effect with example
questions.

The visualization-instructions video was an edited version of the
task-specific video (1.37 min) and included Elements 1–5 of the
list above. Specific information about the collocation effect and
practice overcoming the effect was not included.

Procedure. Participants were randomly assigned to one of two
groups (task-specific instructions or visualization-instructions). After
consent was obtained, participants viewed the relevant video and then
completed the same procedure detailed in Experiment 1 but with only
the 9-track visualization. As the 9-track visualization exhibited the
largest collocation effect, we used it as a baseline to try to reduce the
collocation effect with the instruction videos.

Results

As in Experiment 1, we used a multilevel logistic regression model
to determine the influence of instructions on the damage ratings. We
compared the 9-track display results from Experiment 1 to new data
from participants who received the additional instructions.
Instruction-type (none, task, and general), collocation (off and on),
distance (12° and 14°), and the interaction between collocation and
instructions were entered as fixed effects (see Table 3). Participants
were entered as random effects. Collocation was coded such that
effects indicate a change from off-line to online trials, and the no-
instructions condition was specified as the referent.

As illustrated in Figure 8, the participants who viewed the
general (M � .96, SD � 1.22) and task-specific instructions (M �
.66, SD � 1.01) demonstrated significantly less of a collocation
effect compared to those who received no instructions (M � 1.70,
SD � 1.56). The coefficients for the interactions indicate that the
task-specific instructions reduced the bias by 1.04 on the Likert
scale, which corresponds to a 61% reduction of the collocation
effect observed with the 9-track display. For the visualization
instructions, the bias was reduced by .74 on the Likert scale or a

44% reduction of the collocation effect observed with the 9-track
display. To test whether the task-specific instructions reduced
the collocation effect more than the visualization instructions, the
same analysis was conducted, but the visualization instructions were
specified as the referent. This analysis revealed that the task-specific
instructions reduced the collocation effect significantly more than the
general instructions, b � �0.30, t(125) � �6.12, p � .00, 95% CI
[�0.39, �0.20].

For confidence, a multilevel model was used to evaluate the impact
of instructions and collocation (fixed effects) on confidence ratings
with participants as random effects. This analysis revealed that par-
ticipants who viewed both the visualization (M � 4.6, SD � 1.4), b �
.89, t(128) � 3.83, p � .000, 95% CI [0.43, 1.35] and the task-specific
instructions (M � 4.93, SD � 1.48), b � 1.23, t(128) � 5.26, p �
.000, 95% CI [0.77, 1.69] had significantly more confidence in their
damage ratings compared to those who received no instructions (M �
3.7, SD � 1.74). To test whether participants with task-specific
instructions were more confident in their ratings compared to those
who received the visualization instructions, the same analysis was
conducted, but the visualization instructions were specified as the
referent. This analysis revealed participants with the task-specific
instructions were not more confident in their responses compared to
those with visualization instructions, b � 0.33, t(125) � 1.35, p �
.17, 95% CI [�.15, .82].

The results of the survey questions can be found in Table 4.
Using a general linear model, instruction-type was used to predict
question response with the no-instructions condition as the refer-
ent. Full output of the models can be found in the online supple-
mentary materials. For Q1, no significant differences were found
between no instructions and either of the instruction conditions.
For Q2 (collocation), participants with the task-specific instruc-
tions were more likely to answer the question correctly compared
to those who received no instructions. For Q3 (all possible paths),
participants who received either instruction condition answered the
question more correctly than those without instructions.

Discussion

In Experiment 2, we found that the collocation effect was
significantly, but not entirely, reduced by instructions. The task-
specific instructions attenuated the collocation effect to a greater
degree than the visualization instructions, as evidenced by both the
objective behavioral measures and the participants’ self-report
measures of their understanding. This finding illustrates both the
effectiveness of instructions and the powerful influence of marks

Table 3
List of Fixed Effects With Coefficients, Standard Errors, p Values, and 95% Confidence
Intervals (CIs) From the Statistical Model Predicting Damage Ratings

Fixed effects Coefficient SE t value p value 95% CI

(Intercept) 4.52 .19 23.87 .00 [4.15, 4.89]
Collocation 1.71 .03 56.07 .00 [1.64, 1.76]
Task-specific instruction �.18 .22 �.82 .41 [�.60, .24]
Visualization instructions .81 .22 3.74 .0001 [.38, 1.23]
Distance �.13 .009 �13.46 .00 [�.14, �.10]
Collocation � Task-Specific Instruction �1.04 .05 �22.54 .00 [�1.13, �.95]
Collocation � Visualization Instructions �.74 .05 �16.02 .00 [�.83, �.64]

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

11ENSEMBLE COGNITION

http://dx.doi.org/10.1037/xap0000245.supp
http://dx.doi.org/10.1037/xap0000245.supp


and channels in a visualization, as the collocation effect was never
fully reduced by knowledge-driven processing.

General Discussion

Together, the current experiments explored the influence of
visual properties and knowledge-driven processing on the previ-
ously observed collocation effect (Padilla et al., 2017) in hurricane
forecast visualizations. We were able to demonstrate two ap-
proaches for reducing the collocation effect. In Experiment 1, we
reduced the collocation effect by increasing the number of ensem-
ble members plotted. When we increased the number of ensemble
members shown, the importance of each ensemble member de-
creased, resulting in more similar damage judgments when a track
directly hit the target compared to when a track just missed the
target. Note that this approach does not assume a change in
conceptualization from the viewer. Instead, we capitalized on the

specifics of how people naturally reason with the information and
then changed the visualization to elicit viewers’ best possible judg-
ments. In addition, both the postsurvey questions and the behavioral
results suggest that with each of the visualizations viewers do under-
stand the uncertainty communicated by the distributions. The results
of this study suggest that ensembles can be used to effectively com-
municate uncertainty, but caution should be taken when using them
for specific tasks for which viewers make judgments about a partic-
ular location.

With the second approach executed in Experiment 2, we also
showed that the collocation effect could be significantly reduced
when viewers used top-down knowledge-driven processing to incor-
porate instructions. In the second study, we found that viewers were
consciously aware of the strategies they used to complete the task,
including the influence of a simulated ensemble member when it was
collocated with their point of interest. Although largely reduced with
both approaches, the collocation effect was never completely elimi-
nated. Notably, specific and admittedly frank instructions on how to
overcome the collocation effect did not entirely reduce the bias. Our
work proposes that the marks and channels in a visualization have a
powerful influence on decision-making, which can be resilient to
top-down knowledge-driven processing and should be taken seri-
ously.

Other possible explanations for the collocation effect were not
directly tested in the current study, such as the use of Gestalt
principles of perceptual organization (Wertheimer, 1938) and
object-based attention (Scholl, 2001). In the context of graph
comprehension, Pinker (1990) has argued that we use Gestalt
principles of perceptual grouping to constrain how visual features
are linked together. Principles of grouping demonstrate that visual
elements that are spatially proximal to each other (grouping by
proximity), have smooth continuation with one another (grouping
by good continuation), or are visually connected (grouping by
connectedness) will be perceived as part of a single configuration.
Several studies on graph understanding have shown that interpre-
tations are affected by different Gestalt grouping principles. For
example, the within-the-bar bias described earlier (Newman &
Scholl, 2012; see also Okan, Garcia-Retamero, Cokely, & Maldo-
nado, 2018) can be explained by the “visual chunking” of a bar as
a single contained entity. Others have shown that modifying
graphs so that certain Gestalt principles are in effect influences our
ability to identify global trends in the data (Shah, Mayer, &
Hegarty, 1999) or our accuracy in interpreting statistical interac-
tions (Ali & Peebles, 2013). In the current study, the ensemble
display may have evoked various grouping principles that influ-

Table 4
Proportion of Correct for Each Visualization Condition

Questions None
Visualization

instruction
Task-specific

instruction

Q1. The display indicates that the forecasters are less certain about the path of the
hurricane as time passes. Yes: 50% Yes: 35% Yes: 42%

Q2. Locations that are touching a hurricane track are more likely to be hit by the storm
than locations equidistant from the center of the forecast but not touching a
hurricane track. No: 34.6% No: 42% No: 90%���

Q3. The hurricane forecast shows all possible paths the hurricane could take. No: 63% No: 87%� No: 92%�

� p � .05. ��� p � .000.

Figure 8. Damage change scores for the 9-track display conditions with
no instructions, visualization instructions, and task-specific instructions.
Bars represent 95% confidence intervals around the mean.
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ence viewers’ interpretations. A possible explanation based on per-
ceptual grouping could be that viewers perceived the collocated
dot-line configuration as a single object, enhanced by object-based
attention mechanisms (Scholl, 2001). With additional lines added, less
attention may have been directed at the individual ensemble member
that contained the dot. Likewise, the amount of space between the
lines changed when additional lines were added, possibly reducing
attention to the distinction between on- and off-line trials. Future
studies using eye-tracking methods could help to distinguish whether
the lines and spaces attract less attention as the number of ensemble
members increases. The displays could also be manipulated in terms
of the thickness of the lines, the diameter of the dot, and the size of the
spaces to test whether these features might affect processes of group-
ing.

This work also illustrated methods for developing both general and
task-specific instructions and showed that instructions could change
decisions with visualizations. Prior work demonstrated inconsistent
findings as to whether people could utilize prior knowledge to change
their judgments when viewing visualizations (Bailey, Carswell, Grant,
& Basham, 2007; Boone et al., 2018; Joslyn & LeClerc, 2013; Shen,
Carswell, Santhanam, & Bailey, 2012). Consistent with the recom-
mendations from Zapata-Rivera, Zwick, and Vezzu (2016), this work
finds that instructions can be used to reduce a specific error in
reasoning with visualizations. We believe that the task-specific in-
structions were more successful than the general instructions because
they targeted a specific distortion rather than trying to improve judg-
ments broadly, which may be why other work did not find consistent
improvements in visualization decision-making when providing
viewers with more information (Boone et al., 2018; Savelli & Joslyn,
2013). Our intention for not providing participants with detailed
instructions on how to interpret hurricane forecasts in Experiment 1
was, first, to understand what type of biases were naturally elicited
purely by the visualization technique. Further, in real-world contexts,
such as in hurricane forecasts on the news, it is rare that viewers are
given a full description of how the forecast visualizations were gen-
erated and how to effectively interpret the forecasts. We sought to
examine how people make judgments about storm damage with
limited background information, to better understand what elements
of the visualization technique are eliciting biases that would likely be
observed in the real world.

The applied contributions of this work are to demonstrate that
ensemble hurricane forecasts are effective for intuitively commu-
nicating uncertainty in hurricane paths, but also that it is important
to consider unintended consequences of the ensemble display
itself. We showed that when more simulated ensemble members
are plotted, the adverse effects of this visualization technique are
reduced, but not completely. Our stimuli showed the largest ad-
vantage when displaying about 30 ensemble members, but the
maximum number could vary in other displays depending on
numerous parameters such as spread and line thickness. We also
demonstrated that providing instructions about how the hurricane
forecast was generated and the collocation effect significantly
reduced the adverse effects of this visualization technique. Addi-
tional work is needed to test how these findings generalize to other
contexts where ensemble visualizations are used.

Although recent work reveals many merits to reconstructed
ensemble paths compared to randomly sampled paths (Liu et al.,
2019), one unconsidered component of randomly sampled paths is
that they may convey more uncertainty compared to the smoother

and more regularly distributed paths used in the current study. Liu
et al. (2019) found that participants demonstrate a similar pattern
of damage ratings between randomly sampled and reconstructed
paths, where participants rate greater damage toward the center of
the distribution and less damage as the distance from the center
increases. However, damage ratings might not be sensitive enough
to pick up on differences in the perception of uncertainty between
the two techniques. Future work might consider the impact of the
nature of the ensemble paths on the perception of uncertainty.

In addition, future research might consider how people with
different levels of exposure to hurricane forecasts respond to
various encodings of ensemble paths. The naive population used in
the current study was selected as a baseline so that the influence of
exposure to hurricane forecasts could be evaluated. Individuals
who live in Florida, for example, might not demonstrate the
collocation effect because they have first-hand experiences with
the uncertainty of hurricane paths, or they might demonstrate a
larger collocation effect, because they might have a greater emo-
tional response to a line overlapping their town. Examining the
influence of prior experiences with hazards on the perception of
visual elements in a forecast is an open area of exploration.

Conclusions

Ensemble visualizations are an increasingly popular method for
visualizing data, because emerging research demonstrates that
ensemble visualizations can effectively and intuitively communi-
cate traditionally complex statistical concepts to novice viewers.
Ensemble visualizations are now being used to help local officials
make large-scale decisions such as whether to evacuate a town
before a hurricane strike. Given their widespread use and impact,
we need to understand how ensemble visualizations influence our
judgments and actions. We found that simulated ensemble visual-
izations that include a greater number of ensemble members (but
not too many) can be an effective visualization technique for
various types of decision-making tasks and that providing instruc-
tions about how the visualization is created can help people make
more effective decisions. Further, this work demonstrates the
importance of evaluating both the lower level perceptual and
higher level cognitive processes at work when making decisions
with visualizations. By understanding the cognitive processes as-
sociated with visualization reasoning, we can make more effective
predictions about viewers’ judgments and create increasingly tar-
geted visualization improvements and decision aids.
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Appendix

Full instruction videos are in additional online materials, which
can be found at: https://osf.io/j34g5/.

Visualization Instructions Transcript

Hurricane forecasts can help you understand where a hurricane
may go. Meteorologists create mathematical models to predict the
path of a hurricane, and sometimes they use polylines to represent
the hurricane’s predicted path. One line represents one output of
the model. While hurricane forecast models are improving, even
with these models, meteorologists aren’t 100% sure of the exact
path that the hurricane will take. Many factors can change the path
of the hurricane, such as unexpected weather changes. To show the
range of possible paths that the hurricane could take, meteorolo-
gists use various techniques to plot multiple lines. The spread and
distribution of lines is intended to show you the general direction
that the hurricane will go. Here is an animation of a real hurricane
forecast, where the scientists plotted many lines based on historical
data. Notice where most of the lines are grouped. This is the most
likely path that the hurricane will take. Also notice that each line
is only one of hundreds of lines produced by the model. For this
specific model, this means that any one line isn’t very meaningful.
Scientists cannot always show you animations, like the one you
just saw. Sometimes they have to use a single image for print
publications such as newspapers or reports. If you see an image
like this, it doesn’t show you all of the other possible lines, like the
animation did. The lines that you see are only a small subset of all
possible lines.

Task Specific Instructions Transcript

Hurricane forecasts can help you understand where a hurricane
may go. Meteorologists create mathematical models to predict the
path of a hurricane, and sometimes they use polylines to represent
the hurricane’s predicted path. One line represents one output of
the model. While hurricane forecast models are improving, even
with these models, meteorologists aren’t 100% sure of the exact
path that the hurricane will take. Many factors can change the path
of the hurricane, such as unexpected weather changes. To show the

range of possible paths that the hurricane could take, meteorolo-
gists use various techniques to plot multiple lines. The spread and
distribution of lines is intended to show you the general direction
that the hurricane will go. Here is an animation of a real hurricane
forecast, where the scientists plotted many lines based on historical
data. Notice where most of the lines are grouped. This is the most
likely path that the hurricane will take. Also notice that each line
is only one of hundreds of lines produced by the model. For this
specific model, this means that any one line isn’t very meaningful.
Scientists cannot always show you animations, like the one you
just saw. Sometimes they have to use a single image for print
publications such as newspapers or reports. If you see an image
like this, it doesn’t show you all of the other possible lines, like the
animation did. The lines that you see are only a small subset of all
possible lines. This means that if you see one line overlapping your
town or just missing it that is not meaningful because, as we
learned, there are many lines that are not represented. Rather it is
more important, to identify the center of the grouping of lines.
Areas near the center of the grouping of lines have the highest
likelihood of being hit by the storm. Let’s try an example. Which
location do you think would receive more damage? Keep in mind
that these lines do not give you information about the size or
intensity of the storm - just the path that it might take. Location A
has the highest likelihood of being hit by the storm because it is
closer to the center of the grouping of lines. Let’s try one more
example. Which location would receive the most damage? In this
case, Location B has the highest likelihood of being hit by the
storm. Remember to not base your judgment on an individual line.
To interpret these correctly you must imagine where the center of
the storm is, and locations closest to the center have the highest
likelihood of being hit by the storm. To sum up what we’ve learned
today, each line is only a sampling of the many possible lines. So
it does not matter if one line overlaps your point of interest or not.
Instead, you should focus on the center of the grouping of lines,
which shows the most likely path that the hurricane will take.
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