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Understanding how people interpret and use visually presented uncertainty data is an important yet
seldom studied aspect of data visualization applications. Current approaches in visualization often display
uncertainty as an additional data attribute without a well-defined context. Our goal was to test whether
different graphical displays (glyphs) would influence a decision about which of 2 weather forecasts was
a more accurate predictor of an uncertain temperature forecast value. We used a statistical inference task
based on fictional univariate normal distributions, each characterized by a mean and standard deviation.
Participants viewed 1 of 5 different glyph types representing 2 weather forecast distributions. Three of
these used variations in spatial encoding to communicate the distributions and the other 2 used nonspatial
encoding (brightness or color). Four distribution pairs were created with different relative standard
deviations (uncertainty of the forecasts). We found that there was a difference in how decisions were
made with spatial versus nonspatial glyphs, but no difference among the spatial glyphs themselves.
Furthermore, the effect of different glyph types changed as a function of the variability of the
distributions. The results are discussed in the context of how visualizations might improve decision
making under uncertainty.
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Though it is inherent to most data, uncertainty information has
been classically difficult to capture and display, whether the result
of measurement, forecasting, or modeling (Pang, Wittenbrink, &
Lodha, 1997). Computational models are now being used to help
make far-reaching policy decisions that impact the health, safety,
and well-being of many millions of people. These decisions pertain
to a wide range of issues including quality of our air and water, the
treatment of disease, and the availability and use of energy, as well
as transportation, public safety, and economics. Errors and uncer-
tainties are intrinsic to this process and must be accounted for if
decisions are to be made in a rational and optimal manner. Despite
the importance of conveying uncertainty, graphical displays do not
always present uncertainty-based information in a way that is

easily interpretable to the intended user, and decision makers do
not always utilize uncertainty-based information as it is intended.
The visual and spatial design principles influencing uncertainty-
based decision making should be carefully considered to generate
effective solutions to this problem (Zwick, Zapata-Rivera, & He-
garty, 2014). Our goal was to determine how variations in several
relatively simple visual displays presenting varying amounts of
uncertainty would inform decisions by nonexperts in a weather
forecast scenario.

Current approaches to uncertainty visualization vary in many
ways, including the way uncertainty is represented quantitatively.
One approach is to represent a range of variability in the visualized
data. Existing uncertainty visualization has encoded this type of
uncertainty through “graying out” using color saturation (Hengl,
2003), “out of focus” using blur (Jiang, Ormeling, & Kainz, 1995),
“foggy” using transparency (Rhodes, Laramee, Bergeron, & Sparr,
2003; MacEachren et al., 2005), “noisy spots” using texture (How-
ard, & MacEachren, 1996), and “glyphs” which are compound
point symbols that encode both data point and uncertainty (Wit-
tenbrink, Pang, & Lodha, 1996; Pang et al., 1997) or glyph
“ensembles”, which integrate multiple dimensions of data simula-
tions (Sanyal et al., 2010). A second approach is to encode prob-
abilistic forms of uncertainty using displays such as “icon arrays”
or visual grids that show the proportion of data falling in certain
conditions (Garcia-Retamero & Cokely, 2013).

Others, such as MacEachren et al. (2012), have defined uncer-
tainty into subcomponents (such as spatial and temporal accuracy,
precision, and trust), and asked nonexperts to judge intuitiveness
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of (and make accuracy judgments using) different visual encodings
of these subproperties of uncertainty. The logic used is that fea-
tures that are spontaneously interpreted as conveying uncertainty
could be more effectively used in displays. These researchers
found that fuzziness, location, value, arrangement, size, and trans-
parency were all rated as highly intuitive, with saturation rated as
very low intuitively—conflicting with Hengl (2003) and others’
claims above. It appears that there is a lack of a consensus in the
visualization literature concerning exactly what visual properties
are best for facilitating understanding in nonexpert users.

The types of encodings used and studied in the visualization
communities routinely focus on visual metaphors for uncertainty
and often neglect the underlying cognitive mechanisms that inform
decision making and action. Some work has attempted to empir-
ically evaluate these encodings by simultaneously accounting for
visual information as well as the cognitive mechanisms involved in
evaluating uncertainty visualizations. In other words, how are
users actually interpreting and using these encodings of uncer-
tainty information? Schweizer and Goodchild (1992) tested
whether value or saturation better coded uncertainty information
on a choropleth (color-coded) map of the United States, finding
that both experienced and nonexpert users misunderstood uncer-
tainty information more often when provided with an accurate
legend compared with an inverted legend. This provided insight
into what Schweizer and Goodchild call a “dark is more” heuris-
tic—darker colors are associated with more certainty—that indi-
viduals typically bring to the task based on past experience or
domain-specific common knowledge. Aerts, Clarke, and Keuper
(2003) also found that encoding higher levels of uncertainty as
lighter red and lower levels as darker red was an effective method
of communicating uncertainty in an urban planning context. Hengl
(2003) proposed a model for encoding continuous uncertainty by
using paleness or whiteness. Evans (1997) found that the “dark is
more” heuristic also applies to animated visualizations. It appears,
then, that these almost predetermined heuristics may have a greater
impact on users’ interpretations of visualizations of uncertainty
than legends or even the visual encodings themselves. More re-
cently, Zuk and Carpendale (2007) also argued that consideration
of users’ reasoning processes would help generate more easily
interpretable uncertainty visualizations. Users themselves, as well
as the nature and domain of the task at hand, must be considered
in addition to the data. Sanyal, Zhang, Bhattacharya, Amburn, and
Moorhead (2009) set out to test some of these principles using
different methods of visualizing uncertainty with 1D and 2D data
sets, finding that efficiency of interpretation of visual encodings
significantly interacts with the nature of the task. Together, these
studies suggest that encodings of uncertainty should account for
the heuristics that bias both users’ reasoning processes and final
decisions.

While uncertainty information is important and inherent to data
presentation, past research demonstrates that nonexpert decision
makers are especially inept at making judgments using visualiza-
tions of uncertainty because of misunderstanding of information
provided (Joslyn, Savelli, & Nadav-Greenberg, 2011) or cognitive
biasing of information (Klayman & Ha, 1987). Oftentimes, these
factors contribute to erosion of trust in the data source, which
further biases users’ decisions that are made using uncertain in-
formation (MacEachren et al., 2012). This phenomenon is not
unique to weather or map-based applications and has also been

noted across other tasks, such as predicted change in financial
information over time (Bisantz, Marsiglio, & Munch, 2005), judg-
ments of risk in an economic game (Morone & Ozdemir, 2012),
and judgments of air traffic control flow (Masalonis & Parasura-
man, 2003). While these issues arise within multiple tasks and
domains, we sought to better understand users’ decision-making
processes related to the uncertainty visualizations inherent to
weather forecasting.

Though it appears that uncertainty visualizations matter to de-
cision makers, it is unclear why certain types of visualizations are
commonly misinterpreted. In psychology and statistics, for exam-
ple, bar graphs have been shown to be misinterpreted, with users
interpreting data points visually “within” the bar as more likely a
part of the underlying distribution than points falling “outside” the
bar that were visually equidistant from the mean (Newman &
Scholl, 2012). There has been a push to include confidence inter-
vals in order to better guide users’ understanding of uncertainty
information in these contexts (Cumming & Finch, 2005). Fidler
and Loftus (2009) make the argument that confidence intervals
should replace p values as the accepted form of data presentation
in the social sciences due to their ability to better visually represent
uncertainty information (related to the underlying distribution of
data). Yet empirical work shows that even expert users with
experience in statistics and/or psychology perform poorly at sta-
tistical inference tasks involving uncertainty-based confidence in-
tervals (Belia, Fidler, Williams, & Cumming, 2005). Because
uncertainty visualizations are both commonly misunderstood and
often implemented in weather forecasting applications, we sought
to test three different visualization glyphs that presented forecast
uncertainty spatially.

Research is not consistent regarding what matters when attempt-
ing to accurately visually portray domain-specific uncertainty in-
formation. The techniques discussed previously that are typically
used to portray uncertainty information in the statistics and visu-
alization literatures have not been sufficiently tested in domain-
specific applications. Recent work shows that nonexpert users
better utilize and trust uncertainty-inclusive predictive interval
visualizations of temperature over deterministic (single-value) vi-
sualizations of the same underlying temperature data (Joslyn,
Nemec, & Savelli, 2013). Despite the issues inherent to uncertainty
information display, uncertainty information is still very important
to domain-specific applications for conveying information accu-
rately to users and for gaining user trust in order to facilitate safe,
rational decision making in the face of extreme weather forecasts.
In one sample of real users, Broad, Leiserowitz, Weinkle, and
Steketee (2007) showed that hurricane error cones typically used
by the National Hurricane Center were frequently misinterpreted,
with users believing that the cone represented area of impact rather
than potential hurricane tracks. Cox, House and Lindell (2013)
proposed to solve this problem by generating an ensemble spa-
ghetti plot that differentially presents uncertainty information to
nonexpert users. A better understanding of the cognitive and
perceptual mechanisms of decisions related to uncertainty visual-
ization could help lessen costly user misinterpretations in future
applications.

The current experiment was designed to examine how changing
the visual representation of uncertainty could influence under-
standing of the information presented, to explore how users’ heu-
ristics may bias reasoning processes and final decisions, and fi-
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nally, to increase understanding of the cognitive and perceptual
mechanisms of decisions related to uncertainty visualization. We
examined whether different methods of visually depicting the
underlying distributions of weather forecasts would influence non-
expert decision making. In this experiment, we asked viewers to
perform a classification task—which of two weather forecasts for
a specific day was the most accurate prediction of a given tem-
perature value? We represented uncertainty in the forecast as a
normal distribution of likely values. By including uncertainty with
domain-specific data, we ensured that our decision task required
cognition of uncertainty.

We created five different glyphs. Three of the glyphs repre-
sented temperature distributions spatially. One was an interval
denoting a range of values within which there is a .95 probability
that the actual value lies, analogous to a 95% confidence interval
for sample means. Two others were variations on the 95% interval
intended to provide more information about the underlying distri-
bution (e.g., that values increasingly further from the center had
lower probabilities and that there were not discrete boundaries at
the end of the interval). The final two glyphs used nonspatial
features—brightness and color—to encode the variability in the
distribution. We predicted that for a sample of nonexpert decision
makers, glyphs portraying more explicit encoding of the underly-
ing distributions might be more likely to lead participants to
consider the uncertainty information. If participants do use the
uncertainty information, one possible outcome is that they would
evaluate a forecast as more accurate based on an interpretation of
the actual value as being more likely, where likelihoods are de-
fined by the values of the two probability density functions at the
presented temperature value. A second possibility is that partici-
pants would make their decisions based on an interpretation of
uncertainty as variability in the forecast, rather than likelihood.
Variability is characterized using the standard deviation of the
distribution. Alternatively, it is possible that participants would
ignore uncertainty information altogether and interpret the forecast
that is closer to the actual value as being more accurate. In
addition, we predicted that the effect of glyph type on the use of
uncertainty information would be influenced by the amount of
variability in the distribution sets presented.

Method

Participants

Participants were 106 students from the University of Utah
participating to fulfill course requirements (age: 18–51, mean age:
22, gender: 67 female, 36 male, 3 unrecorded). All participants
were screened for color deficiency. One additional participant was
excluded for a color deficiency.

Stimuli

Stimuli were presented on a 558.4 � 380.8 mm Asus PA246
Series LCD Monitor with 1,920 � 1,200 pixel resolution, using
E-Prime v2.0 software. On each trial, participants were presented
with a display depicting two weather forecasts. These were fic-
tional forecasting systems labeled “StormWatch” and “Weather-
net,” which were displayed next to one another horizontally on the
screen (see Figure 1). Each forecast used one glyph, which en-

coded the predicted temperatures in Fahrenheit. Between the two
forecasts, a black plus sign was presented that indicated the actual
temperature recorded, labeled “Recorded Temperature.”

Stimuli were generated by adopting a Bayesian view of the
uncertainty in the forecast data (Marzouk, Najm, & Rahn, 2007).
This approach uses probability distributions to model both random
events and partial knowledge of the world. In our case, we pre-
sumed that uncertainty in the forecast temperature was character-
ized by a normally distributed likelihood function. We created four
pairs of forecasts, each with a difference of means of 2.62°
Fahrenheit and varying standard deviations (SD) such that one
distribution of the pair had a relatively smaller SD than the other
distribution, while maintaining the same difference between means
(see Figure 2 and Table 1). We refer to these as distribution sets.
For the four distribution sets, the “Recorded Temperature” values
shown on individual trials were one of �/�0.26, �/�0.78, �/
�1.57, or �/�4.18 °F relative to the average of the two distribu-
tion means.

Two additional manipulations were added to create more trials,
using the same four distribution sets. The first was to randomly
shift the two likelihood distributions and the corresponding “Re-
corded Temperature” values such that the average of the two
distribution means was uniformly distributed over the range 72.23°
– 82.68° Fahrenheit. The second was that the two different SDs
and the two different means were presented on both left and right
sides of the display. This gave us four distinct trials for each
“Recorded Temperature” value (also referred to as the probe point)
associated with each distribution set.

Five glyph types were generated (see Figure 3). The 95%
Interval (I95) glyph presented the distribution with a dot repre-
senting the mean and a line with end caps encoding a range of
values such that there is a .95 probability that the actual value lies
within the interval. Prior research suggests that intervals such as
this are often misinterpreted as signaling a uniform distribution
with well-defined boundaries (Cumming & Finch, 2005; Cum-
ming, 2007). A second glyph (IMulti) attempted to correct this
misinterpretation by using no end caps or explicit indication of the
mean and stepped intervals representing .47, .95, and .98 proba-
bilities. The Probability Density Function (PDF) glyph explicitly
encoded the probability density function, with darker values indi-
cating greater likelihood and lighter values indicating less likeli-
hood. This glyph was intended to visually encourage treatment of
the distribution as a nonuniform distribution. The Dot glyph en-
coded the SD by brightness, with darker values corresponding to
smaller SD. This type of graphic would be appropriate for visual-
ization applications where spatial encoding of distribution values
is not feasible. The Colored Dot (CDot) glyph was similar to Dot
but encoded the SD using a black-body radiation color map (Bor-
land & Taylor, 2007) that also varied in brightness in the same
manner as the Dot glyph, providing two separate channels of
information. Both Dot and CDot varied continuously as a function
of the underlying standard deviation, though only seven examples
were given in the legend.

Design

A 4 (distribution set) � 8 (probed temperature values) � 5
(glyph type) mixed factorial design was used. Participants were
randomly assigned to one of five glyph type conditions as a
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Figure 1. Examples of screen displays showing the 95% Interval (I95) glyph (top figure) and Dot glyph
(bottom figure) using Distribution Set 3. These examples show one trial type with the lower standard deviation
and higher mean on the right position (Stormwatch), although in the actual experiment, all glyphs were presented
in equal numbers of trials in right and left positions for all four distribution sets. The right portion of the display
is a key, which was presented throughout the task to provide participants with bell curve approximations of
uncertainty (SD of underlying distributions) encodings.
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between-subjects factor. Distribution sets and probe points were
within-subjects variables. Four distributions sets, eight probe
points, and four distinct trials per probe point (as described above)
resulted in a total of 128 trials per participant.

Procedure

The lights in the experiment room were turned on and the blinds
shut to reduce screen glare. An experimenter ran contrast and
gamma monitor tests prior to the task (http://www.lagom.nl/lcd-
test/) to insure display constancy across monitors. Each participant
gave informed consent and then was screened for color deficiency.
The desk chair and monitor heights were adjusted so that the
participant’s eye height was at the midpoint of the screen. Each
session lasted approximately one hour.

The experimenter read the instructions and provided a printed
copy to the participant. The participants were asked to determine

which forecast was more accurate given the actual temperature
recorded that day (see Figure 1). They were given the following
description of the scenario/task and instructions about the uncer-
tainty visualizations presented:

Almost all current weather forecasts include a specific prediction for
future high and low temperatures, even though the temperature may
end up being different than predicted. The plots you will see in this
experiment represent the outcomes of two new temperature forecast-
ing systems for a specific date, along with the actual high temperature
for that date. Both systems report forecast temperatures in a manner
that indicates the amount of uncertainty in the predictions for the
given day. Neither system is more accurate than the other on average
over the course of the year. For each plot, you will be asked to indicate
which of the two systems made the more accurate forecast, taking into
account the information about the uncertainty of the forecast in your
answer.

The output of each forecasting system will be indicated using this
graph. The right portion shows how the temperature forecasts are

Table 1
The Four Distribution Sets and Associated Standard Deviations
in Fahrenheit

Distribution set Larger SD Smaller SD

1 0.98 0.33
2 0.47 0.19
3 2.91 1.94
4 3.64 1.21

Note. SE � standard deviation.

Figure 3. Examples of each glyph type used to visually present uncer-
tainty information in temperature forecasts. From left to right: I95, IMulti,
PDF, Dot, CDot.

Figure 2. The four distribution sets used. The � represents the eight possible locations of “Recorded
Temperature” probe points expressed in distance from the average of the two distribution means in Fahrenheit.
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represented. There are examples of the forecast graphic representing
three different levels of uncertainty, paired with their associated
probabilistic bell curves. The left portion of the screen shows the
graph that you will be using to make your decision. The higher a
graphic is on the graph, the higher the temperature forecast it repre-
sents. The cross in the middle represents the actual temperature for the
forecasted day. Please compare the actual temperature with the tem-
perature forecasts to decide which forecast was more accurate.

Following completion of the task, 12 debriefing trials were
conducted. These trials included a sample of the trials for each
distribution set (three trials of each distribution set of varying
probed temperature values). Participants were asked to make an
accuracy decision, and describe the strategies used to inform
decision making aloud to the experimenter. The experimenter
recorded participants’ responses using an Olympus DP-201 voice
recorder. Recorded responses were later transcribed into written
text. These self-reports were intended to provide insight into the
heuristics informing participants’ decision making.

Results

Because the eight probed temperature values varied around a
range of distribution means (72.23°–82.68°), we centered the
means at 0 to be able to collapse across the trials for analysis. We
defined a crossover point as the value (within the continuous range
of probed temperature values from �4.18° to 4.18°) where the
mean response to choose one of the forecasts crossed a threshold
of .50. For each forecast pair, this threshold represented the point
at which the participant changed from selecting the forecast with
relatively smaller SD to relatively larger SD. The movement of the
crossover point toward one distribution corresponds to a bias to
choose the other distribution. This value was calculated for each
individual for each of the four distribution sets, leading to four
potential crossover points per individual. In some cases there was
no crossover point, due to a majority of responses given to one of
the forecasts at every probe point (n � 34, 8.0% of 424 total
possible crossover points). In these cases, the data point was not
included in the analysis of comparison of means, but was analyzed
descriptively to assess any patterns of excluded data. There were
also some cases in which multiple crossover points resulted. These
data points (n � 27, 6.36% of 424 total possible points) were also
excluded, but were not analyzed further.

First we performed a mixed-model ANOVA1 on the crossover
temperature values (in degrees Fahrenheit), with glyph as a
between-subjects variable and distribution as within-subject vari-
able, which showed no main effect of glyph, F(4, 93) � 1.022, p �
.40, but a significant effect of distribution set, F(3, 263) � 77.70,
p � .001 and importantly, a glyph � distribution set interaction,
F(12, 263) � 5.42, p � .001. To further understand this interac-
tion, we ran a univariate ANOVA on mean crossover points for
each distribution set separately, using glyph type as a between-
subjects factor, to test our main hypothesis that glyph type would
influence decision making.

For Distribution Set 1, one of the two distribution sets in which
the standard deviations were relatively small relative to the differ-
ence in means, the ANOVA revealed a main effect of glyph type,
F(4, 87) � 3.47, p � .011, partial �2 � .137. Planned simple
contrasts compared each glyph to the 95% Interval, I95, (M �
.016), showing no difference between IMulti, the multiple stepped

intervals, (M � .067) and I95 (SE � .14, p � .72), no difference
between PDF, the probability density function, (M � .015) and I95
(SE � .14, p � .98), but significant differences between Dot, the
grayscale dot, (M � �.34) and I95 (SE � .14, p � .012) and CDot,
the colored dot, (M � �.29) and I95 (SE � .15, p � .042). For Dot
and Cdot, the crossover points moved negatively away from 0 (the
value equidistant from the means of each distribution). This is
consistent with a strategy that biased the decision toward choosing
the forecast distribution with the least variability, and is opposite
to the behavior that would be expected from a strategy that biases
the decision toward the forecast with the highest likelihood for the
temperature that actually occurred (see Figure 4a). For the three
spatial-based glyphs, the crossover point falls very near 0, the
point that is equidistant between the two means. This suggests that
for these glyphs, participants were essentially ignoring the uncer-
tainty information provided by the glyph and simply relying on a
strategy to choose the distribution with the mean closest to the
temperature value presented.

Results were similar for Distribution Set 2, the other distribution
set in which the SDs were relatively small relative to the difference
in means. The ANOVA revealed a main effect of glyph type, F(4,
94) � 4.19, p � .004, partial �2 � .151. Planned simple contrasts
compared each glyph to the standard I95 (M � .12), showing no
difference between IMulti (M � .06) and I95 (SE � .11, p � .57),
no difference between PDF (M � .11) and I95 (SE � .11, p �
.92), but a significant difference between Dot (M � �.19) and I95
(SE � .11, p � .005) and CDot (M � �.21) and I95 (SE � .11,
p � .004), consistent again with a bias in responses for the
dot-based glyphs toward the weather forecast distribution with the
smaller SD (see Figure 4b). As in Distribution Set 1, the direction
of the decision criterion for the dot-based glyphs was opposite to
that of a decision based on the highest likelihood. This suggests
that the decisions were based more on relative variability of the
distributions than on relative likelihood. Also consistent with the
results of Distribution Set 1, there was little use of uncertainty
information for the spatial-based glyphs.

For Distribution Set 3, one of the two distribution sets in which
the SDs were relatively large relative to the difference in means,
there was also a significant effect of glyph type, F(4, 87) � 2.97,
p � .024, partial �2 � .120. The results of the planned contrasts
were similar to the above distributions in finding no significant
differences between the I95 (M � �1.28) and IMulti (M � �1.06)
or PDF (M � �1.35, ps � .49, 80, respectively), a significant
difference between Dot (M � �.47) and I95 (SE � .30, p � .009),
and a marginal difference between CDot (M � �.68) and I95
(SE � .31, p � .056). However the magnitude and direction of
the effect is different. All glyphs showed a bias toward choos-
ing the forecast with the smaller SD, but the bias was much
greater for the three spatial glyphs (I95, IMulti, PDF) compared
to Dot and CDot (see Figure 4c).

For Distribution Set 4 (large SDs relative to the difference in
means), the results were similar to those seen in Distribution Set 3,
showing a main effect of glyph type, F(4, 75) � 3.35, p � .014,

1 A linear mixed-model, in contrast to Repeated Measures ANOVA,
allows for analysis of all of the data even in circumstances of missing data,
as in the current data set, as some participants were missing a crossover
point for some distribution set/glyph type combinations.
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partial �2 � .152. There were no differences between I95
(M � �1.42) and IMulti (M � �1.16) or I95 and PDF
(M � �1.61, ps � .45, .57, respectively). There was a significant
difference between I95 and Dot (M � �.50; SE � .34, p � .009),
but an effect only approaching significance between I95 and CDot
(M � �.80; SE � .38, p � .10). As in Distribution Set 3,
responses for all glyphs were biased toward the forecast with the
smaller SD, but this bias was greater for the spatial glyphs com-
pared to the dots (see Figure 4d).

For both Distribution Sets 3 and 4, the highest likelihood decision
is in the negative direction (�.52), which is also consistent with a bias
to choose the distribution with the lower variability (see Figures 4c
and 4d). For the dot-based glyphs, given that the crossover points fall
very close to the highest likelihood decision criterion, we are unable
to distinguish between the likelihood and variability accounts. For the
spatial glyphs, while the crossover point also moved in a negative
direction, it is even more negative than the likelihood answer would
predict, more likely suggesting a strategy to choose the distribution
with the smaller SD rather than a strategy based on likelihood.
Furthermore, the reduced negative bias for the dot-based glyphs
compared to the spatial glyphs is consistent with the use of a vari-
ability strategy, but modulated by potentially less salient information
for variability when represented by color or brightness instead of a
spatial dimension. We discuss the possible strategies used in more
detail below.

We also performed a descriptive analysis of “no crossover” trials.
Failure to show a crossover point overwhelmingly resulted from a
bias to choose the forecast with the lower SD (94% of “no crossover”
trials). While this happened across all distribution sets and glyphs (see
Figure 5), the frequency of trials with no crossovers was lowest for
Distribution Set 2 (small SDs) and greatest for Distribution Set 4
(large SDs). This analysis is consistent with the ANOVA and figures
presented above, suggesting that the bias to choose the less variable
distribution is likely even greater than the statistical analysis reveals.

Participants’ debriefing responses were closely examined on a
per-trial basis to determine if any emergent strategies (sometimes
referred to as “fast and frugal” heuristics) had informed decision-
making during the experiment (Gigerenzer & Todd, 1999). It should

be noted that the debriefing trials did not sample all trial types (as
defined by the set of all actual temperatures for each forecast distri-
bution set) presented in the experiment. Three recorded temperature
values were presented for each distribution set, one of which fell
within the interval between the two distribution means, and two of
which fell outside of this interval on opposite ends of the distribution.
Thus the descriptive conclusions that we can make about self-reported
strategies are limited to the 12 debriefing trials that were presented.

Six distinct strategies were observed from the debriefing data
across all five glyph types (interrater reliability as measured by ICC �
0.815, 95% CI [.795, .833], see Table 2). Strategy 1 involved partic-
ipants choosing the forecast that had the center of its predicted
temperature range closer to the actual temperature. Participants who
used this strategy mostly or completely ignored uncertainty informa-
tion (a distance-to-center heuristic). This strategy was the most com-
monly reported. Strategy 2 involved participants implementing a bias
to choose the less variable distribution regardless of distance to the
center of each distribution. In this less-variable-distribution heuristic,
participants reported that they placed the most emphasis on variability
of the distribution to inform decision making and mostly ignored
relative distance of the actual temperature to the center of each
forecast distribution. Strategy 3 involved participants utilizing both a
distance-to-center and less-variable-distribution decision bias. In other
words, participants chose the forecast distribution that was both clos-
est to the actual temperature and less variable. Participants reported
using this strategy the second most frequently.

A second set of strategies, Strategies 4, 5, and 6, was more hier-
archical in nature, with participants first coming to a decision-making

Figure 4. Mean crossover points plotted on each glyph type for (a)
Distribution Set 1, (b) Distribution Set 2, (c) Distribution Set 3, and (d)
Distribution Set 4. The solid light gray line represents 0, the value equi-
distant from the means of the two distributions. The dashed light gray line
is the crossover point between the highest likelihood answer. The short
black lines represent the mean crossover points for the responses to each
glyph type. As the black lines move lower, this indicates a bias to choose
the forecast with the smaller SD (pictured here on the right of each pair).

Figure 5. Percentage of trials in which there was no crossover point
because of a bias to choose the less variable distribution, presented as a
function of distribution set and glyph type.

Table 2
Percent of Debriefing Trials Grouped Into Six
Strategy Categories

Strategy 1 2 3 4 5 6

Glyph
I95 59.68% 5.14% 22.53% 8.30% 1.19% 3.16%
IMulti 47.44% 1.86% 35.81% 9.77% 1.86% 3.26%
PDF 54.70% 0.85% 25.21% 10.68% 8.12% 0.43%
Dot 62.81% 6.20% 13.22% 8.68% 5.79% 3.31%
CDot 46.18% 11.24% 20.08% 16.06% 6.02% 0.40%
Average 54.16% 5.06% 23.37% 10.69% 4.59% 2.11%
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impasse (due to insufficient information using one set of decision
criteria, such as a distance to center) and then considering secondary
information to complete their decision. Strategy 4 involved partici-
pants reporting choosing the less variable forecast when the actual
temperature appeared relatively equidistant to the center of each
forecast. Strategy 5 involved participants choosing the forecast distri-
bution with its center closest to the recorded temperature when each
forecast distribution consisted of relatively equivalent variability.
Strategy 6 involved participants choosing the more variable distribu-
tion if the actual temperature was visibly equidistant to the center of
both predicted forecasts. For the trials presented, this strategy was
reported least frequently.

In summary, most participants instituted “fast and frugal” heuristics
such as Strategy 1, which relied on distance-to-center, Strategy 2, in
which the less-variable-distribution was chosen regardless of distance,
and Strategy 3, which relied on a combination of distance-to-center
and less-variable-distribution heuristics. When fast and frugal heuris-
tics were more difficult to implement, participants relied on more
hierarchical heuristics that utilized a second set of information to
resolve a conflict or closeness in initial decision criteria, such as when
the forecast distributions appeared relatively equidistant from the
actual temperature or when the forecast distributions appeared rela-
tively equally variable.

This descriptive qualitative analysis provides insight into the
information being utilized by decision-makers, with variability and
closeness to center largely biasing decision-making in the 1D
presentation of weather-specific uncertainty data. While these data
are based on only a sample of the trials presented in the experi-
ment, the self-reports are consistent with the calculated crossover
points, which show that either variability is generally ignored,
(spatial glyphs in Distribution Sets 1 and 2) or there is a bias to
choose the less variable distribution (spatial glyphs in Distribution
Sets 3 and 4 and generally the dot glyphs).

Discussion

The goal of this study was to examine how varying the amount of
uncertainty and its visual representation would influence decisions by
nonexperts in a weather forecast scenario. We set out to determine
whether a more explicit visual representation of the uncertainty in
weather forecasts would lead viewers to use the uncertainty differ-
ently, and whether this effect would be influenced by the amount of
variability presented. The experiment revealed two main findings.
The first showed that the overall level of variability displayed in each
pair of distributions significantly affected the participants’ decisions.
For the first two distribution sets characterized by lower standard
deviations relative to the difference of means, participants’ crossover
points were grouped around zero, which indicates that the point at
which the participant changed from selecting one distribution to the
other is equal in distance from the mean of each distribution. In these
cases, it appears that participants ignored the relative size and overlap
of the distribution sets and instead selected the glyph that was phys-
ically located closest to the temperature value given. However, in
Distribution Sets 3 and 4, which were created with larger standard
deviations, the crossover points were collectively in the negative
range of values. This indicates a shift in decisions to choose the less
variable (smaller SD) distribution.

These results suggest that in the cases where there is less variability
in the distribution and less apparent overlap between each glyph in a

set, participants default to using a strategy that only incorporates
distance from the temperature value presented. This strategy was also
reflected in the self-report data with a high percentage of responses
falling into the distance-to-center strategy category. In contrast, when
the glyphs in a distribution set possess larger SDs and appear to
overlap, using a distance strategy may become more difficult. There-
fore, participants may need to use other information in addition to
distance or employ more complex or hierarchical decision-making
strategies. Both the actual decisions and the self-report data support
the use of alternate strategies that involved either the less-variable-
distribution or a combination of distance-to-center and less-variable-
distribution. The self-reports also suggest that a bias toward choosing
the less variable prediction may have been due to participants’ dif-
ferent interpretation of uncertainty. Instead of understanding the SDs
in terms of variability in predictions, participants may have interpreted
them as indicating how correct or reliable the forecast was. With this
interpretation, it is logical that participants would more often choose
the distribution associated with less uncertainty.

The second notable finding is that of an interaction between glyph
type and distribution set: participants made significantly different
judgments for two separate categories of glyph type within each
distribution set. One category included Dot and Cdot, which encoded
uncertainty as brightness or as a combination of color and brightness.
The other included PDF, I95, and IMulti, in which temperature was
represented spatially, incorporating multiple encoding techniques that
included size, interval bars, and brightness. For Distribution Sets 1
and 2, Dot and Cdot had crossover values that were located in a more
negative range than PDF, I95, and IMulti. As mentioned above, this
shift in crossover point suggests a bias in choosing the forecast with
lower variability. PDF, I95, and IMulti grouped closely around zero,
suggesting that these glyphs provoked the distance strategy to a
greater degree than Dot and Cdot. For Distribution Sets 3 and 4,
participants also made significantly different judgments between these
two glyph groupings. Both groups’ values were located in the nega-
tive range. However, PDF, I95, and IMulti were significantly more
negative, showing an even greater bias to choose the less variable
distribution. As mentioned above, if in fact a variability strategy was
used in all of the glyph types, the reduced bias to choose the less
variable distribution in the nonspatial glyphs could have been due to
color and brightness serving as less salient cues to variability than the
spatial representations.

The purpose of creating three different glyphs to represent the
distribution in a spatial dimension was to investigate whether provid-
ing more information about the underlying distribution than a typical
95% confidence interval would lead people to make a decision that
approached the maximum likelihood criteria more closely. Specifi-
cally, we presented multiple intervals and open bars in IMulti to
attempt to convey a normal distribution without discrete endpoints,
and we presented the gradient in PDF to explicitly encode the prob-
ability density function. We did not, however, explain the statistical
meaning of the information presented. Notably, neither of these
glyphs differed significantly from the more familiar 95% interval
(I95). This result suggests that either the visual information presented
in the glyphs was not interpreted correctly or it was ignored. Partic-
ularly for the distribution sets with overall lower SD (sets 1 and 2), the
result of a crossover point clearly at zero suggests the tendency to
choose a distance-to-center strategy over the use of uncertainty. There
was no evidence that this strategy changed with the implementation of
IMulti or PDF. Future work might assess whether more explicit
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instruction or training about how the underlying distributions are
represented in the glyphs changes decision-making behavior. If our
hypothesis is correct, that participants chose the less variable forecast
because they interpreted the lower variability in prediction as a more
reliable or accurate forecast, then it is possible that instructions that
distinguish between these two interpretations of uncertainty would
change behavior. For distribution sets 3 and 4, while the crossover
point moved negatively away from zero, there still were no significant
differences among the three spatial glyphs. This suggests that al-
though a different strategy (likely the less-variable-distribution heu-
ristic) was used for these distribution sets, it was used similarly across
all three glyphs. It is also possible that the lack of difference between
the spatial glyphs is not an issue with understanding the glyphs
themselves, but a more fundamental problem with reasoning about a
probability density function. Future work using explicit training in
reasoning with uncertainty could help to address this possibility.

Comparison of our results with the highest likelihood answer,
defined by the value of the probability density function at the
presented temperature, sheds additional light on participant
decision-making strategy. For Distribution Sets 1 and 2, the high-
est likelihood answer2 moves in the positive direction (�.52)
relative to the value equidistant from both means (0), opposite to
the direction of the performance seen with the dot-based glyphs.
For Distributions Sets 3 and 4, the highest likelihood moves in the
negative direction (�.52), consistent with the direction of re-
sponses found in our study. However, this is also the same direc-
tion as predicted by the less-variable-distribution strategy. Thus,
while converging evidence from the debriefing trials suggests that
participants were probably not using higher likelihood to make
their decisions for the dot-based glyphs, we cannot distinguish use
of likelihood from the less-variable-distribution strategy because
of the nature of the distributions in sets 3 and 4.

These findings have important implications for the use of uncer-
tainty visualizations in applied domains. It is possible that the under-
lying distribution matters more in guiding uncertainty-based decision
making when the underlying distribution of data is both inherently
more uncertain and widely distributed. In these cases in the current
study, participants were biased toward the distribution with lower SD.
In application domains where greater amounts of uncertainty are
presented, visualization designers should be aware of this bias and
further research is needed to define possible glyph types or training
that would reduce this heuristic. Related to glyph-type effects on
decision making, dot-based visualizations may have guided partici-
pants’ decision making differently in the face of large variability by
mostly eliminating size-based spatial cues (which were very salient in
the PDF, I95, and IMulti glyphs) to the underlying variability. Our
findings suggest that when selecting a glyph type, designers should
consider the distribution of uncertainty as a primary factor that can
bias the way the viewer may interpret the visualization. However,
more work is needed to further examine how the characteristics of the
uncertainty distributions interact (such as the overall amount of vari-
ability and the relative variability among different distributions) to
influence the types of heuristics used.

Caution must be taken in generalizing these findings to include uses
of uncertainty visualizations in other domains and tasks. One piece of
the experiment space left unexplored by this experiment is domain-
specific effects on decision making under uncertainty. First, partici-
pants often expect weather-forecasting models to include uncertainty
information, due to first-hand experience with inaccurate forecasting

(Joslyn & Savelli, 2010). Perhaps presenting uncertainty information
in a domain where uncertainty is not expected would lead to greater
trust of the data and a better understanding of the underlying distri-
butions represented by each glyph, less skewed by weather-specific
expectations. In addition, weather forecasting itself consists of more
specific subdomains aside from temperature. For example, it remains
unclear if glyphs represented within 2D space—as is required by
some hurricane forecasting uncertainty visualizations—would dem-
onstrate similar results and/or benefit from verbal descriptions of
uncertainty (Cox et al., 2013). It is also the case that generally people
are more experienced with uncertainty included in precipitation fore-
casts compared to temperature forecasts. Future work could examine
the influence of the subdomain of weather on use and interpretation of
uncertainty information.

Second, we asked participants to judge which forecast was more
accurate on a given day, but a host of other tasks or questions could
have been performed using uncertainty visualizations. An example of
another methodology includes asking nonexperts to make judgments
or decisions with consequences. Joslyn and LeClerc (2012), for in-
stance, asked decision makers to make a judgment of whether or not
to salt a road based on a series of deterministic or probabilistic
forecasts. Perhaps framing the presentation of weather-based visual-
izations in the context of a real-world decision would both better
illuminate the probabilistic nature of uncertainty and get participants
to more carefully consider their decision (lessening the use of hard
and fast heuristics). Other uncertainty visualization work has collected
nonexperts quantitative and qualitative evaluations of uncertainty
information in visualizations by tasking nonexperts with nonconse-
quential search and counting tasks unrelated to a specific domain-
(Sanyal et al., 2009; MacEachren et al., 2012).

In summary, we used glyphs representing single scalar values to
investigate decision-making strategies employed by nonexpert us-
ers in a realistic weather forecast context. We found that users
frequently employ strategies that ignore uncertainty-based infor-
mation or show decisions that are biased toward lower variability
distributions, and that these strategies sometimes lead to decision
making that is not consistent with a highest likelihood solution. In
addition, we found that decision-making performance varied by
glyph type, with different strategies and decisions employed for
spatial versus nonspatial encoding of uncertainty, but that the
additional information about the distributions provided in the
variations of the spatial glyphs did not change performance. We
hope that knowledge gained through this investigation can be used
in weather forecasting, emergency preparedness, and other fields
to improve communication of uncertain information to nonexpert
users.

2 In addition to the highest likelihood transition point between the two
distributions considered here, there is a second transition outside of the
interval between the two means and associated with relatively low values
in both PDF functions. We did not consider this second transition point in
the analysis of the results.
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