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Fig. 1: Three approaches to visualizing a tropical cyclone prediction with uncertainty.

Abstract—A common approach to sampling the space of a prediction is the generation of an ensemble of potential outcomes, where
the ensembile’s distribution reveals the statistical structure of the prediction space. For example, the US National Hurricane Center
generates multiple day predictions for a storm’s path, size, and wind speed, and then uses a Monte Carlo approach to sample this
prediction into a large ensemble of potential storm outcomes. Various forms of summary visualizations are generated from such an
ensemble, often using spatial spread to indicate its statistical characteristics. However, studies have shown that changes in the size of
such summary glyphs, representing changes in the uncertainty of the prediction, are frequently confounded with other attributes of the
phenomenon, such as its size or strength. In addition, simulation ensembles typically encode multivariate information, which can be
difficult or confusing to include in a summary display. This problem can be overcome by directly displaying the ensemble as a set
of annotated trajectories, however this solution will not be effective if ensembles are densely overdrawn or structurally disorganized.
We propose to overcome these difficulties by selectively sampling the original ensemble, constructing a smaller representative and
spatially well organized ensemble. This can be drawn directly as a set of paths that implicitly reveals the underlying spatial uncertainty
distribution of the prediction. Since this approach does not use a visual channel to encode uncertainty, additional information can more
easily be encoded in the display without leading to visual confusion. To demonstrate our argument, we describe the development
of a visualization for ensembles of tropical cyclone forecast tracks, explaining how their spatial and temporal predictions, as well as
other crucial storm characteristics such as size and intensity, can be clearly revealed. We verify the effectiveness of this visualization
approach through a cognitive study exploring how storm damage estimates are affected by the density of tracks drawn, and by the

presence or absence of annotating information on storm size and intensity.

Index Terms—uncertainty visualization, hurricane forecasts, ensemble visualization, ensemble sampling, implicit uncertainty

1 INTRODUCTION

Much of the work on uncertainty visualization has focused on producing
representations of the uncertainty in a prediction or estimation using
one of the visual or spatial channels in the display such as size, opacity,
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color, or glyph style [23,24]. While this approach has the appeal
of explicitly presenting uncertainty along with data, it reduces the
number of information channels available for conveying multivariate
information, and often results in a display that visually confounds the
uncertainty information with the prediction or estimation itself. A
case in point is in tropical cyclone prediction, where the well known
uncertainty cone, illustrated in Figure la, has been experimentally
shown to mislead viewers into the misunderstanding that the cone’s
increase in width over time indicates that the storm is predicted to
increase in size or intensity [14,27]. Indeed, in recent years the National
Hurricane Center has added a text warning to the cone: Note: The cone
contains the probable path of the storm center but does not show the
size of the storm [20]. In fact, the unadorned cone visualization conveys
no information concerning either the potential size of the storm or its
predicted intensity.

Curve Boxplots [17] provide a promising alternative form of sum-
mary visualization. They have a number of advantages over the un-
certainty cone, including the ability to portray levels of uncertainty
and to portray outliers, but they have the same inherent problem: as
the uncertainty increases, the spatial area subsumed by the visualiza-



tion increases. While there have been no cognitive studies on Curve
Boxplots to test this hypothesis, our experience testing a variety of
summary displays [27] would indicate that this increase in spatial area
will induce a cognitive bias towards seeing the storm as increasing in
intensity over the time frame of the prediction.

The one approach that our experiments have shown to overcome
this cognitive bias is to portray the prediction as a representative set
of potential storm paths. Unlike summary displays that provide an
explicit representation of uncertainty, this approach provides an implicit
representation [5]. Figure 1b, from Cox et al. [6], demonstrates such a
display, that allows the viewer to infer the uncertainty from its spatial
layout. They showed experimentally that this visualization has small
but measurable advantages over the uncertainty cone in conveying the
spatial spread of storm path possibilities. More importantly, recent
studies have shown that it does not appear to convey the impression that
the storm is predicted to grow bigger and stronger over time [22,27].
Additional studies in different domains have shown the superiority
of discrete implicit representations in place of continuous curves in
conveying an accurate representation of the distribution of random
variables [10-12]. While implicit uncertainty representations appear to
have advantages over explicit representations, when dealing with large
or complex data sets the purely implicit approach can suffer from severe
overdrawing or clutter, making the visualization difficult to interpret.
This drawback is apparent in Figure 1b.

Our work on tropical storm predictions has been guided over the past
five years by regular consultation with key personnel at the National
Hurricane Center. Of greatest relevance to the current work, were our
personal communications with the Federal Emergency Management
Agency (FEMA) representative at the NHC. He made it clear to us that
supporting FEMA’s emergency decision-making responsibilities, when
a tropical cyclone is approaching, requires having clear information on
where the storm is likely to strike, when it is likely to strike, and what
its intensity is likely to be when it strikes. In addition, forecasters at
the NHC wanted to see a representation of storm size along with any
representation of the storm’s spatial position. No single visualization
currently published by the NHC provides all of this information, nor
does the implicit visualization of Figure 1b.

In this paper we attempt to convey the predicted where-when-
intensity-size information in an implicit uncertainty visualization. To
do this, we are proposing a sampling approach that reconstructs a small
representative and coherent set of paths from a larger ensemble of inco-
herent paths. We demonstrate this method using US National Hurricane
Center tropical cyclone prediction ensembles, showing how it can be
used to produce visualizations like that shown in Figure 1c. Because
we display only a small number of well laid out tracks, it is possible to
annotate these tracks with glyphs providing time and storm size infor-
mation, and with a color coding for predicted storm intensity. These can
be seen in Figure lc, and in more detail in Figure 11. Interestingly, this
visualization is structurally identical to one suggested independently
in a proposal by designers in a recent Scientific American Visual blog
article [4], but we have provided an algorithmic foundation to support
its construction, and annotation with additional storm information.

In previous work we have explored ensemble sampling approaches
for specific points in time but not for entire paths [14]. While this
approach could be used as the basis for an interactive application for
viewing a storm prediction, there remained the need for a visualiza-
tion providing an overview of the prediction over its full time range
(three to five days in the case of tropical storm advisories). This paper
extends our earlier approach to consider complete paths but keeping
the same underlying notion of what we mean by an easily visualizable
representative sample from an ensemble:

* its members accurately preserve the original spatial distribution
of ensemble members, and

* its members maintain a coherent spatial layout, so that overdraw-
ing and clutter are minimized.

Primarily, the technique reported here for achieving these goals be-
gins with extracting a median track of an ensemble by calculating the

median track position at a sequence of time points, partitioning the
ensemble into two equivalent groups, then recursively adding to the rep-
resentative set by computing additional median tracks from successive
groups. The resulting tracks are then drawn over a map of the region
expected to be affected by the storm. Secondarily, our approach seeks
to preserve auxiliary information contained within the ensemble. Each
path generated by the National Hurricane Center algorithm carries time
sampled information about storm size and expected maximum wind
speed. We handle this auxiliary information by interpolating continu-
ous storm strength and storm size fields from the ensemble, and then
resampling from these continuous fields onto the set of representative
paths. This information is used to annotate the tracks as they are drawn.

The following sections of this paper explain the algorithmic tech-
niques underlying our path sampling approach, describe our approach
to the design of path annotations, and show results for a number of
different US Gulf Coast storm predictions. The paper concludes with a
description of and results from a cognitive study that we conducted to
explore this new visualization.

2 METHODOLOGY

Our path sampling algorithm takes as input a prediction ensemble
of 1,000 storm tracks, as produced by an algorithm used by the US
National Hurricane Center (NHC) [7, 8]. This ensemble is not simply
a collection of outputs of storm predictions models, like those often
presented in weather broadcasts as “spaghetti plots”. Instead, the
outputs of a number of different weather models are analyzed to produce
an official storm path prediction. Taken together with a model of its
uncertainty, this prediction is sampled via a Monte Carlo approach to
produce a set of potential storm paths, sampled over 120 hours at one
hour increments. Each sample point on a path indicates the latitude and
longitude of the storm center, along with a number of predicted storm
variables, which can be summarized as indicating the spatial extent of
the storm, and its maximum wind intensity.

Figure 2a shows a random sampling of 15 paths from the National
Hurricane Center ensemble for the 11 AM EDT prediction advisory
for Hurricane Isaac, on August 26, 2012. It is obvious that these paths
are quite irregular in shape, often crossing each other and sometimes
doubling back on themselves. Since our goal is to create a comprehen-
sible visualization, this argues against simply selecting a representative
sampling of these paths. This is also an argument against using Curve
Boxplots [17] with this data, as well as simpler direct ensemble displays
such as spaghetti plots with uncertainty glyphs [28], since its incoherent
structure would not lend itself well to either of these approaches. As
these forecast ensembles are generated by Monte Carlo sampling of sta-
tistical models, such irregularities of individual ensemble members do
not convey meaningful forecast information, and thus preserving their
shapes is not important. What is important is preserving the overall
spatial distribution inherent in the ensemble of storm paths. Figure 2b
shows 15 paths reconstructed from the same ensemble but using our
approach. Instead of selecting a confusing set of complex paths, we
reconstruct a well structured set that maintains this distribution by as-
suring that it is preserved at each of the 120 sampled time points over
the prediction.

The following describes the details of the method developed for
computing a representative subset from an ensemble of forecast tracks.
Formally, we can define an ensemble E of m tracks as E = {Dy,...,D,, }
where the member tracks D; (1 <i < m) are described by a set of data
points D; = {d; ,...,d; 7—1 }, where T defines the number of samples
along a track, e.g. in the NHC ensemble sampling 120-hours prediction
at every hour, T equals 121; a data point d; ; € D; is a collection of

attributes: d; ; = {t_,-,p,-J,Ail_j, ...,Aij}, where ¢, is the time parameter
of this point; p; ; denotes its spatial coordinates, e.g. latitude and

longitude; {Al1 I ...,Af_ j} represents numerical values of S quantitative
attributes of the data pbint, e.g. in a hurricane forecast ensemble these
include storm size and intensity.

The steps of the framework for constructing a sample set E of
n < m tracks from ensemble E is outlined below following the pseu-

docode given by Algorithms 1 and 2, and the C++ implementation of
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Fig. 2: 15 paths from an NHC ensemble.

this framework is available at https://bitbucket.org/leliu712/
hpes.git. Briefly, Algorithm 1 uses Algorithm 2 to construct a smaller
representative resampling of the tracks in the original ensemble. It then
constructs a set of time sampled interpolated fields giving the spatial
distributions of storm size and intensity at each time step of the original
prediction ensemble, and uses these fields to annotate the resampled
tracks with storm size and intensity.

Algorithm 2 constructs the representative resampling by extracting a
smoothed median track from the ensemble (as shown by the white line
in Figure 3a), using this median track at each time step to divide the
remaining points (i.e. those not on the median track) into left and right
regions (as shown by the red and blue points in Figure 3a), and then
applying this same process recursively on the left region (as shown in
Figure 3b), and right region. Thus, the algorithm recursively extracts
new tracks in descending order of their representativeness within the
original ensemble, and the merged set of median tracks determines the
final resampling E (as shown in Figure 3c).

(a) level 1, median track (b) level 2, median on left  (c) level 3, 7 tracks

Fig. 3: Steps in the recursive sampling process for extracting median
tracks from an ensemble.

Algorithm 1: Pseudocode of our sampling framework

input :Forecast ensemble E, and desired recursion level r
output : An annotated representative subset E with n = 2" — 1 paths
Construct representative path resampling E from E via Algorithm 2 ;

foreach timestep j € T do
Compute sizeField j using RBF interpolation [15] ;

Compute intensityField ; using RBF interpolation ;
foreach point p € E at timestep j do .
Annotate p with storm intensity and size from intensityField;
and sizeField;, sampled at p’s location ;

2.1 Constructing a Median Track from an Ensemble

Our algorithm begins by extracting collections of spatial positions at
each individual point in time from ensemble E, e.g. the point set at time
tjis {p1j,...,Pm, ;}- Within each point set, for each time, we assign

a data depth to each point using an estimate of simplicial depth [16].

Algorithm 2: Construct path resampling E from ensemble E

input :Ensemble E, and recursion level r > 0
output : Path sampling E
Initialize median track d as empty ;

foreach timestep j € 7 do_ .
P; contains all points in E at time j ;

Compute simplicial depths of points in P; ;
Append element of P; with largest simplicial depth to the end of d;
Remove short-term loops in d by connecting start and end points ;
Remove zigzags in d using the Lang algorithm ;
Resample d at uniform time steps using BSpline curve fitting ;
E={d};
if » > 1 then
E/ = Er = {} 5
foreach timestep j € T do
P; contains all points in E at time j ;
Determine left and right sides of median track d (see
Section 2.2);
foreach point p; € P;, p; ¢ d do
if p; is enclosed by the left region then
Append p; onto Ej;
else .
‘ Append p; onto EJ ;
E += call Algorithm 2 with inputs E;, and r — 1;
E +=call Algorithm 2 with inputs E,, and r — 1;

return E ;

Briefly, simplicial depth in 2D measures the centrality of a point within
a dataset, by counting how many triangles formed from the points in
the data set enclose that point. Thus, in a dataset with unimodal density
a point near the periphery of the dataset will be enclosed by very few
triangles, while one near the center will be enclosed by a much larger
number. While it appears to be computationally expensive to compute,
fast estimation methods have been shown to be quite robust [16]. Since
simplicial depth provides a center-outward ordering, the deepest point
indicates the spatial center, or median, of these points. Therefore, we
choose the point with largest simplicial depth as the most significant
representation of the entire set.

Subsequently, a median track of the ensemble over time is con-
structed by connecting each of these median points. Figure 4(a) shows
a typical median path extracted in this way from an NHC tropical cy-
clone forecast track ensemble. As this figure shows, this raw path is
highly irregular with self-intersections and zigzags, making it difficult
to determine its left and right sides, but this determination is essential
for the following recursive stages of the sampling algorithm. We make
the assumption that these irregularities have no crucial statistical sig-
nificance, as they are merely high frequency artifacts generated by the
NHC Monte Carlo algorithm. Therefore, we can justifiably smooth this
raw median path to remove these irregularities.

(a) raw median (b) (c) b-spline fit

path path

simplified

Fig. 4: Process of smoothing a median track.

Our first step in smoothing a path is to remove small scale self
intersections, which in the context of tropical storm forecasting we take
to be those occurring over a few hours of forecast time. These can
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justifiably be eliminated because an actual storm rarely exhibits such
a large variation in bearing and speed that it crosses its previous track
in only a few hours. However, self intersections over long periods of
time should be preserved because this phenomenon can often occur
in long-term predictions. (For instance, the prediction of Hurricane
Matthew at SPM, October 6, 2016, forecast that it would reverse and hit
Florida twice over a period of five days [19].) Therefore, for our loop
detection algorithm we slide a small time window over each median
track. If a loop is detected within the window, it is eliminated by directly
reconnecting its starting and ending points, ignoring all intermediate
ones. We have experimentally found that a time window of 24 hours
works well over all of the ensembles that we have used.

Second, the zigzags of a track are removed by using polyline simpli-
fication. Even though there exist a number of popular techniques such
as the Douglas-Peucker [9] and the Visvalingam [31] algorithms, these
can produce new self intersections in the simplified results. Therefore,
we chose the Lang algorithm [13], since it maintains the original points,
avoids new self-intersections, and retains the positional accuracy of the
original line [30]. This algorithm begins by defining a search region
including a fixed number of consecutive points of the original line and
then constructing a tentative simplified segment by connecting the first
and last points of this region. The perpendicular distances from the
interior points to the tentative simplified segment are computed. If a dis-
tance is greater than a predefined threshold, the search region is reduced
by excluding the last point, and the corresponding point-to-segment
perpendicular distances are computed again. This process repeats until
no distance exceeds the threshold. Then, all remaining interior points
of the resulting search region are eliminated, and a new search region
is formed starting with the last point of the former search region. The
algorithm continues until reaching the last point of the original line.
Figure 4b shows the simplified version of the raw median track.

However, since the simplified track is obtained by eliminating points,
it may be missing several time steps in the original forecast. To address
this issue, and to obtain some additional smoothing, we construct a
cubic B-spline curve [29] using the remaining points along the sim-
plified path as control points and their associated times to construct a
knot vector. We then resample this curve at the original prediction time
points. A final version of the median track exemplified here is shown
in Figure 4c.

2.2 Partitioning an Ensemble

The next step in the sampling approach is to divide E into two nearly
equal smaller ensembles. To do so, we need to classify all points as
being on the left or right side of the median track.

We start by defining a normal direction at each spatial point along
the median track. As shown in Figure 5a, given two adjacent time
points j and j/ = j+ 1 on a median track d; and their corresponding
spatial locations along the track, p; ; and p; jr, a directed line segment
e; ; from p; ; to p; j» is constructed, and its normal direction n; ; is
computed. We assign the normal direction at the point p; ; to be n; ;.
We do this for all segments, assigning the normal direction n; 7 of
the last point of the track to be identical to n; 7_».

Once the normal directions are defined, the left and right sides of
individual directed segments can be determined. First, the median track
is extended infinitely along its starting and ending directions. Then for
each segment e; j, two infinite lines /; ; and /; » rooted at p; ; and p; j
are extended along their normal directions n; ; and n; . If ; j and [;
intersect at a point ¢; ; before intersecting any other part of the track,
as in Figure 5a, the region enclosed by the triangle Ay, . . ¢, ; is taken

to be on the left of the segment, if the dot product n; ;- (¢; j — pi ;) is
positive, or on the right if it is negative. The region enclosed by /; ; and
l; j» on the other side of e; ; is the opposite region. If, on the other hand,
l; j and [; jr intersect with the extended median track at points c; j and
c; j before intersecting with each other this determines a quadrilateral
Di,jCi,jCi,y Pi,jy shown in Figure 5b. A similar left-right test can then
be applied to determine whether or not this region is on the left or
right, again leaving the region enclosed by /; ; and [; j on the opposite
side of e; ; as the opposite region. The left and right regions of the
median track are then defined as the union of corresponding left and
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Fig. 5: Determination of left and right regions of a directed line segment
of a median path. (a) /;j and [; ;» intersect each other, (b) /; ; and [;, j'
intersect (ii before intersecting each other, (c) a time window is used to
disambiguate situations where a median path has a long term loop.

right regions of all directed line segments along the track.

One complication is that a median track can potentially include loops
indicating a long-term reverse of the storm, resulting in the problem
that left regions of some directed line segments overlap with right
regions of others, resulting in ambiguity in determining the left and
right of the track. We address this issue by using the same time window
introduced in 2.1. As demonstrated in Figure 5c, a sample point at
time j, shown by the red point, is centered in a time window indicated
by the orange points. The determination of the left and right regions
of the path at time j is constrained to consider only the left and right
regions of directed line segments within this time window, outlined by
the bold black lines, with the first and last segments extended infinitely.
Subsequently, individual points at time step j of E can be grouped into
the left or right partition based on their time-window-constrained left
or right area of the median track.

2.3 Constructing a Representative Set of Tracks

To acquire n median tracks, the previous two steps are recursively
executed for the original full ensemble E and its following subdivisions
E’,f and Efe’ where k£ > 1 denotes the level of recursion. Since the total

number of median tracks generated at the kth level of recursion is 2F — 1,
the process is terminated when k = [log, (n+1)].

Because any specific median track divides E or any succeeding
portion of it into two equal halves and it is the most representative
of its portion spatially and statistically, a collection of these median
tracks represents 100% x Z{’(:z 2,1—,1 of the statistical spatial distribution
conveyed by the full ensemble. For instance, 7 tracks generated from
3 levels of recursion cover approximately 75% of the original spatial
distribution.

One problem is that pushing the algorithm to produce a number
of median tracks near to the number of the original ensemble tracks
will typically produce a number of invalid median tracks. This is
because the number of points remaining in partitions being subdivided
decreases to the point where they are no longer sampled densely enough
to represent the original distribution. This problem is exacerbated by
our line smoothing algorithm, which can lead to an uneven partition of
points to the left and right sides when the number of points is small.
Since our method is designed to greatly reduce the number of tracks,
so that n < m, this is rarely an issue. However, if it is desired to very
densely sample the ensemble, we have found that filtering out median
tracks that contain less than 60% of the total number of time samples in
the original tracks alleviates this problem, typically leaving almost 90%
of the original number of tracks, all having smoothly curved shapes.

2.4 Incorporating Ancillary Ensemble Variables

The ultimate goal of our approach is to incorporate accurately all
available ensemble variables in a smaller and well spatially organized



subset of tracks. While our median track sampling approach preserves
the spatial distribution of the original ensemble, and provides a good
spatial layout for visualization purposes, it does not attempt to preserve
the distribution of variables other than spatial position. For example, in
our tropical cyclone example we are especially interested in preserving
storm size and intensity. We do this using an entirely different approach.

At each time point in the original prediction ensemble we interpolate
a spatial field for each variable that we wish to preserve. We do this
using a Radial Basis Function (RBF) interpolation approach that we
have described fully in a previous paper [15]. Briefly, for each time
sample in the prediction we determine a set of weights for Gaussian
kernels centered at each of the data points, whose radii are dependent
on local sample density. To avoid the over-fitting problem due to the
large number of original spatial locations, the RBF calculation is done
on a small subset of the original points chosen to minimize the squared
error of the interpolation at the known data points. This is done using
a version of the Orthogonal Least Squares method [2, 3]. Then, at
this time, for any point in space, the value of a variable is determined
by the weighted sum of the original sample values taken at that point.
For instance, to include predicted storm intensity at a specific point
in time j, we compute a smooth, continuous storm intensity field us-
ing RBF interpolation over a subset of input samples chosen from all
ensemble members at time point j; and the values being interpolated
are their associated predicted intensities. To interpolate storm intensi-
ties over the complete time period of the forecast, RBF interpolation
systems for all points in time (i.e. every hour) are constructed. Other
storm characteristics such as storm size can be handled using the same
strategy.

3 VALIDATION OF THE PATH SAMPLING APPROACH

In order to validate our algorithmic framework for path sampling, we
applied it to a number of historical tropical storm prediction ensembles
supplied to us by the NHC. In particular, we looked at predictions of
Hurricane Katrina at 5:00 AM EDT on August 27, 2005, Hurricane
Rita at 4:00 AM CDT on September 22, 2005, Hurricane Ike at 4:00
PM CDT on September 10, 2008, Hurricane Ida at 3:00 AM CST on
November 8, 2009, and Hurricane Issac at 11:00 AM EDT on August
26, 2012. Each of these ensembles comprised 1,000 member tracks,
with hourly time-sampled predicted locations (latitude and longitude),
storm sizes, and storm intensities over the subsequent 120 hours (5 days)
from the beginning of the predictions. For demonstration purposes we
used only the first 72-hours (3 days) of the predictions to follow the
convention of the traditional cone of uncertainty, however our approach
can be applied to complete data sets without any modification.

To demonstrate that the representative tracks extracted using our
approach accurately preserve the spatial distribution included in the
original predictions, the original ensembles of two of these hurricanes
and their corresponding subsets of representative tracks were drawn
as single pixel wide red polylines over a map of the US Gulf Coast,
on a 1080p HD display. Two examples are shown in a side by side
comparison in Figure 6. The other storm predictions gave similar
results, but are not shown due to space considerations. The left column
of this figure shows the plots of the NHC ensembles, while the right
shows nearly full subsets of median tracks, filtered as described in
the previous section, to avoid inaccurate under sampled paths. This
comparison reveals that these subsets preserve the most significant
trends of these hurricanes because the high densities of tracks covered
by the subsets seen in the center regions are nearly identical to those
covered by the original ensembles. In addition, the individual subsets
exhibit spatial spreads nearly identical, along the direction orthogonal
to the predicted forward motion of the storms, to those in the original
ensembles.

However, Figure 6 also shows that the tracks of these representa-
tive subsets are shorter than some of those in the original ensembles.
This is because, although we preserve the directional uncertainty of
the predicted storm tracks, we do not preserve the uncertainty in the
predicted speed of the storm. This issue is more clearly seen when
details of the coverages and their distributions are compared at specific
points in time. For instance, Figure 7 shows all of the predicted storm

Full NHC Ensembles Extracted Median Tracks

Isaac: 11 AM EDT Sunday 08/26/2012, advisory 22

Fig. 6: A comparison between the original forecast ensembles of hurri-
canes Ike and Isaac (left column) and their corresponding subsets of
representative tracks extracted using our algorithm (right column).

positions in the ensembles for Hurricane Ida at 60 and 72 hours from
the beginning of the prediction. The red points represent the predicted
locations extracted from the original ensemble, the simplicial depths of
which are color-encoded using luminance, the gray polylines represent
representative tracks extracted from the ensemble using our approach,
and the blue points represent locations along the representative tracks
at these specific points in time. As these figures show, the blue points
are located at the center of the distribution (i.e. they cover the area with
the brightest red points), and they faithfully represent the spatial uncer-
tainty across the distribution (i.e. the blue outliers closely match those
of the red along the direction perpendicular to the tracks). However, the
blue sample points do not maintain the distribution along the forward
direction of the tracks, which is a result of variation in the predicted
speed of the storm.

Representing speed uncertainty using a small set of tracks that are
parameterized by time is inherently difficult, because of the sparse
sampling. Unless a very large number of tracks of different lengths are
drawn, it will be impossible to show this aspect of the uncertainty in the
prediction. It could be encoded in various ways, such as using glyphs
or overdrawing alternative tracks, as shown in Figure 8. However,
glyphs will inevitably overlap with those portraying possible predicted
locations of adjacent hours as represented by the red and blue circles in
Figure 8a. Likewise, increasing the number of tracks, as in Figure 8b,
will result in visual clutter. In our opinion, both of these approaches
will result in a confusing presentation, and we settle for accurately
representing the median storm speed at each time step. However, this
limitation can be avoided using point-based visualization approaches
such as those proposed by Liu et al. [14].

4 VISUALIZATION DESIGN

In designing a visualization based on our path sampling approach, we
had two primary considerations. First, we needed to decide on the right
number of tracks to faithfully represent the uncertainty in the prediction.
Second, we needed to decide on an effective visual encoding of storm
intensity and size to be applied to the paths. We describe below our
design choices, and in Section 5 we summarize the results of a cognitive
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(a) at 60 hours

(b) at 72 hours

Fig. 7: Detailed illustrations of representative tracks of Hurricane Ida
at two different times from the beginning of the prediction.

(b) dashed alterna-
tive tracks

(a) dashed circles at
alternative positions

Fig. 8: Two ways of visualizing speed uncertainty in storm tracks.

study meant to determine the efficacy of our choices.

To determine the number of tracks to display we considered two
factors. First, we felt that the tracks should cover as much as possible
of the spatial spread of the full ensemble, to provide viewers with
enough information about the full range of likely storm paths. Second,
since an NHC track ensemble is usually quite dense near its spatial
center, adding too many members to the extracted subset would lead to
overdrawing, making it difficult to apply effective annotations to the
tracks as they are drawn. Considering both of these factors, we decided
on using subsets comprised of 15 tracks. These convey approximately
87.5% of the spatial spread of the full ensembles, and still provide
adequate spacing between tracks. These tracks are drawn as polylines
over a map of the region expected to be affected by the storm.

The predicted storm intensities are encoded in this visualization by
rendering each segment of a median path using a color determined by

the predicted intensity attached to the starting location of this segment.

The NHC ensembles describe storm intensity as the maximum predicted
wind speeds measured in nautical miles per hour. To communicate
intensity more effectively to the general public, these wind speeds
are converted to the Saffir-Simpson Hurricane Wind Scale [21], a
widely adopted storm taxonomy system. This system divides hurricane
intensities into five categories, with category 1 being the least severe
(wind speeds between 64 and 82 kts), and category 5 (wind speeds
above 137 kts) being the most severe. The NHC tracks tropical cyclones
even when they are not of hurricane strength, using the two additional
categories of tropical depression (less than 34 kts), and tropical storm
(34-63 kts) to identify their intensities. Since our goal was to make the
resulting seven storm categories in an NHC advisory highly visually
distinguishable, we felt that these could be most appropriately portrayed
using a color scheme with seven distinctly recognizable labeling colors,
rather than a set of steps in hue, saturation, or value.

® 0 000
000 ®

Fig. 9: Ware’s catalog of 12 discriminable colors.

We began our design using the color palette recommended by
Ware [32], reproduced in Figure 9, which consists of a set of col-
ors that are easily distinguishable, and remembered. We intentionally
avoided using blue, cyan, white and black from this palette as they were
too close to the colors used in our background map. We also avoided
yellow as it is so bright that it can be difficult to distinguish when drawn
on a white background. Therefore, we chose the remaining seven colors
for our storm intensity encoding: red, green, pink, gray, orange, brown,
and purple. We then slightly modified the specific colors suggested by
Ware to eliminate large changes in value across colors, which can cause
an individual color to be over-emphasized.

The resulting storm intensity encoding scheme is illustrated in Fig-
ure 10 along with the SRGB values for the colors given on a 0-255 scale.
These colors are sorted in ascending order based on their red channel,
placing red after pink, so that green represents the least dangerous
intensity (tropical depression) while red depicts the most dangerous
intensity (category 5 hurricane).

Storm Intensity R G B
Tropical Depression 90 173 97
Tropical Storm 102 102 102
Category 1 153 112 171

Category 2 191 129 45

o Category 3 224 130 20
Category 4 255 127 127

[ | Category 5 255 80 80

Fig. 10: Our storm intensity color palette.

The colored storm tracks are drawn as polylines over a regional map.
We experimentally determined that a line width of 4 pixels on a 1080p
HD display provided good color perception, while maintaining spatial
separation across most of the prediction. Lines are drawn from the
start of the prediction, advancing in time by one hour for each line
segment. When drawing colors, we use a deadband of 10% around
the wind speed range of the current storm category when determining
the category to be used for the color of the next segment. This helps
to minimize frequent anomalous changes of color along the line that
would otherwise occur if the predicted wind speed were close to one of
the category boundaries.

Finally, the predicted storm sizes are included in our visualization
by drawing circles centered at locations along the tracks. The radii
of these circles are determined by the predicted radii of 64-kt (i.e.
hurricane force) winds at these locations, thus the areas encompassed
by these circles indicate the region around the storm center predicted
to experience hurricane force winds. Since drawing storm size circles
at every hour of a prediction would lead to severe overdrawing, the
storm size circles are shown only every 12 hours. This has the added
advantage that the positions of the circles indicate 1/2 day increments
along that prediction. To further avoid the overdrawing problem the
storm size circles are drawn on the most extreme left and right tracks,
and then spaced across internal tracks to maintain spatial separation. In
this way, the area potentially affected by hurricane force winds, to a
certain level of confidence, is depicted using a few easily visible and
interpreted circles.

Using these design guidelines, visualizations for five NHC forecast
track ensembles were produced. These are depicted in Figure 11,
with the forecast for Hurricane Rita shown in detail in Figure 11a.
Space limitations require that the other four storm predictions be shown
at reduced resolution. As seen in these figures, we include a color
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Fig. 11: Example visualizations of the NHC forecast track ensembles of five historical hurricanes.

key in the upper left-hand corner of each map to assist viewers in
understanding the storm intensity color encoding.

An important benefit of this visualization is that crucial time-based
information included in a forecast is clearly depicted. For instance
Figure 11a shows that at the time of the storm advisory, Hurricane Rita
was as a Category 5 storm, but predicted to drop to a Category 4 storm
over the next 24 hours, and become Category 3 approximately 36 hours
from the beginning of the initial prediction. Landfall is predicted near
to 48 hours, and the storm is seen as weakening to Categories 2, 1, and
below as it passes over land.

5 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our visualizations in enhancing view-
ers’ estimates of hurricane risk, we conducted an extensive cognitive
study. Our study adopted the experimental design used in other re-
cent studies exploring how participants’ judgments of potential storm
damage, and their confidence in these judgments, varied as a function
of visualization type [22,27]. These previous studies indicated that
an ensemble visualization led to damage estimates that conform to a
correct interpretation of the uncertainty in the prediction, whereas all
visualizations based on the cone produced estimates indicating that
increasing uncertainty was being confounded with an increase in storm
size and intensity [22,27]. Having this strong indication of the supe-

riority of the ensemble approach in conveying uncertainty, in our new
study we focused on how the ensemble can be best presented, and not
on comparisons with other approaches as has already been done in prior
work [14,22,27].

The two primary factors that we wanted to explore were how judg-
ments of the potential for storm damage are affected by 1) the number
of tracks drawn, and 2) the presence of annotations indicating storm
size and intensity. We hypothesized that the number of tracks drawn
would influence damage ratings (H1). We also predicted that including
annotations of storm size and intensity would help viewers more accu-
rately calibrate their damage judgments (H2). To test H1, we examined
viewers’ damage judgments when viewing the tracks-only displays
drawn using red polylines showing either 7, 15, or 63 storm forecast
tracks as between-subjects variables (n = 50, n = 51, n = 50 respec-
tively). The number of participants was selected based on a power
analysis conducted in prior work using damage ratings [27]. To test
H2, we compared viewers’ damage judgments while viewing annotated
displays showing 15 tracks drawn using encodings of storm intensity
and size (n = 50) to the displays showing 15 tracks without annota-
tions utilized to test H1, as between-subjects variables. Figures 12(a),
(b), and (c) show examples of the three levels of tracks-only displays,
and (d) shows an example of the annotated display. Participants were
undergraduate psychology students (male = 49, female = 152) who



participated in the experiment for course credit, with a mean age of
23.5 years (SD = 6.6). This naive population was desirable to examine
the effects of the visual properties that we manipulated and not viewers’
prior knowledge about hurricanes, as less than 3% of this population
has lived in a hurricane effected region or has experienced hurricanes.

To test both H1 and H2, the participants’ task was to estimate po-
tential storm damage to a simulated offshore oil rig platform, whose
placement constituted the within-subjects factors in the experiment.
The location of the oil rig was indicated by a blue dot, such as the one
that can be seen on each of the maps in Figure 12. In line with prior
work showing that the influence of visualization characteristics varied
as a function of time into the forecast and oil rig distance from the cen-
ter of the storm [14,27], we tested viewers’ damage judgments for two
time points (24 hours and 48 hours) at four distances from the center
of the storm. Matching prior work [14,27], distances from the central
track were placed along a line perpendicular to the central track di-
rection, at the selected forecast time, at distances of £0.20,0.80, 1.10,
and 1.78 of the NHC 67% prediction error estimates of 186 km at 24
hours, and 347 km at 48 hours. These distances are those used by the
NHC for setting the width of the uncertainty cone visualization, and
are determined by tracking the NHC’s historical forecast error over a
time window of five years [20].

After consenting to participate and being given a description of their
task, participants in each between-subjects group (7, 15, 63, and 15-
annotated) completed 80 trials in a randomized order, consisting of
locations of the platform relative to the central track (8 conditions), the
forecasting time points (2 conditions), and the storms (5 conditions).
In each trial, on a 1-7 Likert scale, the participants were instructed to
estimate the level of damage that might be incurred at the simulated
oil rig based on the likelihood of the storm affecting it and the storm’s
strength in the affected region. They were also instructed to enumerate
their level of confidence in their estimations, also on a 1-7 scale.

5.1

All of the details described in the analysis below, along with additional
analyses, figures and tables that space did not permit can be found
at the website http://lacepadilla.com/exp/ensemble2018/
Analysis.html. To allow for comparison with prior work [14,22,27],
multilevel models (MLM) were fit to the data using R with the /me4
package [1] and using restricted maximum likelihood estimation proce-
dures [25,26]. A multilevel is model is appropriate for modeling these
data as it uses robust estimation procedures appropriate for partition-
ing variance and error structures in mixed designs, as in the current
study. To test H1, two MLMs were computed using the interaction
between visualization type, distance, and time point, along with the cor-
responding lower level interactions and main effects as fixed effects and
participants as random effects to account for variance in damage judg-
ments. The same analysis was used to examine variance in confidence
judgments. The variables were coded such that the 7 track display,
24-hr time point, and closest location to the center of the storm were
the referents by which the other variables were compared to. Similar
models were used for testing H2, where visualization type compared
the 7 track unannotated display (referent) to the annotated version.

Experimental Results

5.2 Results: H1

The following section will detail the interactions intended to test H1
and then utilize post hoc MLMs to clarify the relationships. The fixed
and random effects explained 56% of the variance in damage ratings
(conditional R2). The results of this analysis revealed a significant
three-way interaction between distance, time point, and the 7 vs. 63
track display, b = 0.59, t = 5.81, p < 0.001, 95 % CI [0.39, 0.78].
This interaction can be seen in Figure 13. Here the orange lines
represent the results at 24 hours into the prediction and the blue lines at
48 hours. For the 63 track display, the 24 hour time point has an overall
slope of -2.45, meaning that for every one unit change in distance,
damage ratings decrease by 2.45 on average on the Likert scale from
1-7, conditional R? = 55. Whereas, for the 48 hour time point, the
average slope is -1.77, which is a significant difference between the
24- and 48-hr slopes of .68 (b =0.67,t =9.18, p < 0.001, 95 % CI

[0.53, 0.82], conditional R? for the model = 0.53). For the 63 track
display, it is apparent that the damage to distance relationship is flatter
at 48-hr than at 24-hr, which is consistent with the increased spatial
spread of predicted paths. This suggests that participants’ attention is
being drawn away from the center of the prediction as the spatial spread
of the prediction increases, an effect that we do not see for either the 7
or 15 track displays. For the 7 track display, there is not a significant
difference in slope between the orange and blue lines (mean 24-hr
slope = -2.10, mean 48-hr slope = -2.01, b =0.08, r = 1.34, p =0.17).
It should be noted that while there was not a three-way interaction
between distance, time point, and the 15 vs. 63 track displays, the
slopes for the 15 track display were not significantly different as a
function of time point, (mean 24-hr slope = -2.1, mean 48-hr slope =
-2.01,b=0.12,t =1.62, p =0.10). In summary, our conclusion is that
when using a tracks-only display, more than 15 tracks must be drawn
in order for viewers to understand the uncertainty information in the
display, which is in line with H1 suggesting that the number of lines
drawn influences viewers’ judgments of damage.

The analysis of confidence levels showed that for the tracks-only
displays, participants were more confident about their estimations when
shown the 63 track display than with the 15 and 7 track displays (p =
0.02). There was no significant difference in confidence between the
15 and 7 track displays.

5.3 Results: H2

In order to explore the effect of adding annotations of storm intensity
and size to the display, we first conducted an analysis comparing 15
track tracks-only displays to 15 track annotated displays, using similar
MLMs as previously described. Figure 13 shows the corresponding
damage to distance relationships. Use of annotations significantly
influences the relationship between distance-to-center and damage
rating (b =0.68, r =9.10, p < 0.001, 95 % CI [0.53, 0.82], conditional
R? for the model = 0.49). It is apparent in the figure that including
annotations results in lower damage ratings at the spatial center of
the prediction, and higher ones far from the center, indicating that the
annotated visualization is conveying the uncertainty in the prediction.

Further, we tested our prediction that the annotations of storm size
and intensity would help viewers more accurately calibrate their damage
judgments by examining if the specific intensity and storm size at
the time point of the oil rig accounted for a significant proportion of
variance in viewers’ damage ratings. Focusing on just the participants
that viewed the 15 track annotated display, we conducted an MLM that
included the interaction between distance and time, along with size and
intensity of the storm at a given time point for each hurricane. This
analysis revealed that both size (b = 0.013, t = 4.32, p < 0.001, 95
% CI [0.007, 0.019]), and intensity (b = 0.01, r = 10.06, p < 0.001,
95 % CI [0.008, 0.011]) accounted for a significant proportion of
variance in damage ratings over and beyond effects of distance and
time (conditional R? for the model = 0.49). In line with our prediction,
viewers’ damage ratings increased as both size and intensity increased,
which is evidence for H2. Additionally, a post hoc analysis revealed
that neither accounted for a significantly larger proportion of variance,
meaning that they equally influenced damage ratings.

For confidence ratings, there was no significant difference in confi-
dence between the 15 track annotated display and the 15 track tracks-
only display. This last result is somewhat surprising, given the overall
better performance with the annotated display.

Since the 63 track display was superior to the 15 track display, it
was important also to compare it to the 15 track annotated display.
This comparison can be made visually by comparing the 2nd and 4th
columns of Figure 13. Our analysis revealed a significant three-way
interaction between distance, time and the two visualization types
(b=-0.66,t =—6.25, p < 0.001, 95 % CI [-0.86, -0.45], conditional
R? for the model = 0.49). Comparing the damage to distance trend lines
in the figure reveals an overall flatter relationship when the annotation
is used, indicating that participants became more aware of the spatial
spread of uncertainty in the prediction, even though the annotated
display uses less than 1/4 of the number of tracks in the unannotated
display. However, unlike the 63 track trend lines, the 15 track annotated
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(a) 7 tracks, unannotated (b) 15 tracks, unannotated

(c) 63 tracks, unannotated (d) 15 tracks, annotated

Fig. 12: Examples of visualizations compared in the cognitive study. The blue dots indicate the position of a simulated oil rig platform.
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Fig. 13: Mean damage judgments and 95% confidence intervals for 7, 15,

Confidence intervals computed using the 2008 Morey correction [18].

trend lines stay roughly parallel, meaning they do not have significantly
different slopes (b = 0.00, t = 0.22, p = 0.82). In contrast, the 24-hr
slope for the 63 track display is significantly steeper than the 48-hr
slope, as revealed in the analysis for H1. This suggests that the ideal
annotated display should contain more than 15 tracks so that the effect
of the increased spatial spread of predicted paths with increasing time is
better recognized. Optimizing the number of tracks will be the subject
of a future study.

In summary, the key findings from the experiment are the following.
If drawing unannotated tracks, more than 15 tracks are required before
a fair reading of the uncertainty in the prediction is indicated. We
specifically showed that 63 tracks work well. Further, with annotation,
there are strong positive relationships between predicted storm size
and intensity and assigned damage estimates. On the other hand, when
shown 15 tracks annotated with our representations of storm size and
intensity, participants were more cognizant of the spatial spread of
uncertainty than with 63 unannotated tracks, although there is an indica-
tion that using somewhat more than 15 annotated tracks would improve
sensitivity to increasing spatial spread with increasing time point. Thus,
the annotation is helpful both in reducing visual clutter by lowering the
number of tracks that need to be drawn to convey uncertainty, and in
conveying significant elements of storm risk.

6 CONCLUSION

We have shown how an ensemble of paths describing an uncertain
process can be reduced to a representative set and used to produce
a visualization implicitly representing the uncertainty by its spatial
distribution. Our approach is applicable when it is not necessary to
preserve the original tracks, but it is satisfactory to construct a new
set that maintains the original set’s spatial distribution. Our algorithm
constructs a set of representative tracks by recursively finding median
paths that divide the set into nearly equal sized subsets. The algorithm
preserves non-spatial variables associated with the original tracks by

and 63 unannotated, and 15 annotated track displays at 24 and 48 hours.

interpolation and resampling onto the newly constructed paths. We
demonstrated this approach as applied to tropical cyclone prediction
ensembles produced by the US National Hurricane Center (NHC), and
developed a visualization based on our algorithm that is able to encode
storm timing, size, and intensity information in the form of annotated
tracks drawn over a map. Finally, we described a cognitive experiment
providing guidelines for design. It demonstrates how the number of
paths used in the visualization affects its ability to convey the spatial
uncertainty in the storm prediction, and indicates that the visualization’s
annotations work well in conveying storm prediction attributes.

However, there is still work to be done to perfect the method if
it were to be used during a live event. In a personal communication
from Mark DeMaria, Branch Chief of the Technology and Science
Branch of the NHC, he said that we show some interesting results on
new ways to display the underlying data from their Monte Carlo wind
speed probability model, and that the user tests clearly show benefit
from the size and intensity information annotations. However, he is
concerned that since we do not maintain the storm’s speed uncertainty
we risk underestimating or overestimating the strike time of a storm.
In addition, he points out that our interpolation technique will tend to
underestimate the effect of landfall on reducing the storm’s strength, and
that interpolation can decouple the storm size and intensity information
so that a storm below hurricane strength can still show a non-zero
hurricane force wind radius. We are aware of these limitations, and
plan to address them in our future work to improve the approach.
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